INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
14th Edition
ISBN: 9780133918922
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 11.3, Problem 15P
To determine
The horizontal force that the doors will exert on the tray at the position
θ
.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Question 2:
The ideal spring of constant k-2.6 kN/m is attached to the disk at point A and the end fitting at point
B, as shown. The spring is unstretched when OA and Oв are both zero. If the disk is rotated 15° clockwise
and the end fitting is rotated 30°counterclockwise, determine the vector expression for the spring force
F.
Determine distance C so that the moment the spring force makes about the Z axis is equal to 10.82
N.m.
-
A = 15°1
A
250 mm
lllllll
900 mm k = 2.6 kN/m
OB = 30°
B
G
200 mm
200 N
A block placed under the head , of the claw hammer as
shown greatly facilitates the extraction of the nail . If
the 200-N pull on the handle is required to pull the nail
200 mm
calculate the tension T in the nail and the magnitude A
of the force exerted by the hammer head on the block .
The contacting surfaces at A are sufficiently rough to
45 mm
prevent slipping
ii cam
The hand brake for a bicycle is shown. Portions DE and FG are free to rotate on bolt A which is screwed into the frame BC of the bicycle. The brake is actuated by a shielded cable where T1 is applied to point E and T2 is applied to point G. A spring having 40 N compressive force is placed between points E and G so that the brake stays open when it is not being used. Assume the change in the spring's force is negligible when the brake is actuated to produce the F = 100 N forces at points D and F. Determine the necessary cable forces T1 in N.
Chapter 11 Solutions
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Ch. 11.3 - Each link has a mass of 20 kg.Ch. 11.3 - Determine the magnitude of force P required to...Ch. 11.3 - Determine the angle for equilibrium. The spring...Ch. 11.3 - Determine the angle for equilibrium. The spring...Ch. 11.3 - Prob. 5FPCh. 11.3 - Determine the angle for equilibrium. The spring...Ch. 11.3 - The lamp weighs 10 lb.Ch. 11.3 - Each of the four links has a length L and is pin...Ch. 11.3 - Determine the force screw exerts on the cork of...Ch. 11.3 - Determine the disks rotation if the end of the...
Ch. 11.3 - Prob. 5PCh. 11.3 - Prob. 6PCh. 11.3 - if the uniform inks AB and CD each weigh 10 lb....Ch. 11.3 - If the unstretched length of the spring is I0,...Ch. 11.3 - It vertical forces P1 = P2 = 30 lb act at C and E...Ch. 11.3 - Prob. 10PCh. 11.3 - The spring which always remains vertical. Is...Ch. 11.3 - Prob. 12PCh. 11.3 - Prob. 13PCh. 11.3 - Prob. 14PCh. 11.3 - Prob. 15PCh. 11.3 - Prob. 16PCh. 11.3 - Prob. 17PCh. 11.3 - Determine the angle for equilibrium. The spring...Ch. 11.3 - Determine the stillness k of the spring for...Ch. 11.3 - Determine the horizontal compressive force F...Ch. 11.3 - Prob. 21PCh. 11.3 - Prob. 22PCh. 11.3 - The lever is in balance when the load and block...Ch. 11.3 - If the load F weighs 20 lb and the block G weighs...Ch. 11.3 - Determine the force in the hydraulic cylinder...Ch. 11.7 - Determine the equilibrium positions and...Ch. 11.7 - Prob. 27PCh. 11.7 - If the potential function for a conservative...Ch. 11.7 - Prob. 29PCh. 11.7 - Prob. 30PCh. 11.7 - The rod BD, having negligible weight, passes...Ch. 11.7 - Determine the angle for equilibrium when a weight...Ch. 11.7 - Determine the angle for equilibrium and...Ch. 11.7 - Prob. 34PCh. 11.7 - Prob. 35PCh. 11.7 - The bars each have a mass of 3 Kg one the...Ch. 11.7 - The bars each have a mass of 10 kg and the spring...Ch. 11.7 - Determine the required stiffness k of the spring...Ch. 11.7 - It is unstretched when the rod assembly is in the...Ch. 11.7 - Determine the minimum distance d in order for it...Ch. 11.7 - If the spring is unstretched when = 60. Determine...Ch. 11.7 - The contact at A is smooth, end both are pm...Ch. 11.7 - Determine the steepest grade along which it can...Ch. 11.7 - Determine the weight W2, that is on the pan in...Ch. 11.7 - If the rod is supported by a smooth slider block...Ch. 11.7 - Point C is coincident with B when OA is...Ch. 11.7 - Prob. 47PCh. 11.7 - Prob. 48PCh. 11.7 - If the block has three equal sides of length d,...Ch. 11.7 - Prob. 1RPCh. 11.7 - Determine the horizontal force P required to hold...Ch. 11.7 - Prob. 3RPCh. 11.7 - Prob. 4RPCh. 11.7 - Prob. 5RPCh. 11.7 - Prob. 6RPCh. 11.7 - If both spring DE and BC are unstretched when =...Ch. 11.7 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The homogeneous bar AB weighs 25 lb. Determine the magnitudes of the forces acting on the bar at A and B. Neglect friction.arrow_forwardThe woman is trying to move the crate of weight W by pulling on the rope at the angle to the horizontal. Find the smallest possible tension that would cause the crate to slide and the corresponding angle .arrow_forwardThe 1200-lb homogeneous block is placed on rollers and pushed up the 10 incline at constant speed. Determine the force P and the roller reactions at A and B.arrow_forward
- The 1800lbin. couple is applied to member DEF of the pin-connected frame. Find the internal force systems acting on sections 1 and 2.arrow_forwardThe uniform 240-lb bar AB is held in the position shown by the cable AC. Compute the tension in the cable.arrow_forwardThe 300kn sphere is supported by a pull p and a 200kn weight passing over a frictionless pulley. If a=30°. Computer the value of p and tangent.arrow_forward
- The jib crane is designed for a maximum capacity of 5 kN, and its uniform I-beam has a mass of 200 kg. Plot the magnitude R of the force on the pin at A as a function of x through its operating range of x = 0.2 m to x = 3.9 m. On the same set of axes, plot the x- and y- components of the pin reaction at A. Do these plots on a separate piece of paper. Then answer the following questions in Wiley Plus as a check for your work. (a) What is the value of R when x = 0.8 m? (b) What is the value of R when x = 3.2 m? (c) Determine the minimum value of R and the corresponding value of x. (d) For what value of R should the pin at A be designed? 40° m 5 KN -2.9 m 1.2 m Questions: (a) If x = 0.8 m, R= (b) If x= 3.2 m, R= i (c) The minimum value for R = i (d) The pin should be designed to hold i kN kN kN at x = kN.arrow_forwardThe jib crane is designed for a maximum capacity of 9 kN, and its uniform I-beam has a mass of 260 kg. Plot the magnitude R of the force on the pin at A as a function of x through its operating range of x = 0.2 m to x = 3.4 m. On the same set of axes, plot the x- and y- components of the pin reaction at A. Do these plots on a separate piece of paper. Then answer the following questions in Wiley Plus as a check for your work. (a) What is the value of R when x = 1.6 m? (b) What is the value of R when x = 3.2 m? (c) Determine the minimum value of R and the corresponding value of x. (d) For what value of R should the pin at A be designed? 32° x m 9 KN 1.0 m 2.6 m Questions: (a) If x= 1.6 m, R= i (b) If x= 3.2 m, R = i (c) The minimum value for R = i (d) The pin should be designed to hold i KN KN kN at x = i kN.arrow_forwardThe jib crane is designed for a maximum capacity of 14 kN, and its uniform I-beam has a mass of 270 kg. Plot the magnitude R of the force on the pin at A as a function of x through its operating range of x = 0.2 m to x = 4.0 m. On the same set of axes, plot the x- and y-components of the pin reaction at A. Do these plots on a separate piece of paper. Then answer the following questions in Wiley Plus as a check for your work. (You can disregard the plot, I only need a, b, c, and d)arrow_forward
- The jib crane is designed for a maximum capacity of 6 kN, and its uniform I-beam has a mass of 230 kg. Plot the magnitude R of the force on the pin at A as a function of x through its operating range of x = 0.2 m to x = 4.0 m. On the same set of axes, plot the x- and y- components of the pin reaction at A. Do these plots on a separate piece of paper. Then answer the following questions in Wiley Plus as a check for your work. (a) What is the value of R when x = 2.0 m? (b) What is the value of R when x = 3.3 m? (c) Determine the minimum value of R and the corresponding value of x. (d) For what value of R should the pin at A be designed? 34° x 1.3 m 6 kN -2.9 marrow_forwardThe jib crane is designed for a maximum capacity of 14 kN, and its uniform I-beam has a mass of 270 kg. Plot the magnitude R of the force on the pin at A as a function of x through its operating range of x = 0.2 m to x = 4.9 m. On the same set of axes, plot the x- and y- components of the pin reaction at A. Do these plots on a separate piece of paper. Then answer the following questions in Wiley Plus as a check for your work. (a) What is the value of R when x = 2.4 m? (b) What is the value of R when x = 4.5 m? (c) Determine the minimum value of R and the corresponding value of x. (d) For what value of R should the pin at A be designed? 1.6 m Questions: 25° 14 KN -3.5 m (a) If x = 2.4 m, R = (b) If x= 4.5 m, R= (c) The minimum value for R = i (d) The pin should be designed to hold i KN KN kN at x = i kN. marrow_forwardThe jib crane is designed for a maximum capacity of 7 kN, and its uniform I-beam has a mass of 160 kg. Plot the magnitude R of the force on the pin at A as a function of x through its operating range of x = 0.2 m to x = 3.6 m. On the same set of axes, plot the x- and y-components of the pin reaction at A. Do these plots on a separate piece of paper. Then answer the following questions in Wiley Plus as a check for your work.(a) What is the value of R when x = 0.9 m?(b) What is the value of R when x = 3.1 m?(c) Determine the minimum value of R and the corresponding value of x.(d) For what value of R should the pin at A be designed?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
How to balance a see saw using moments example problem; Author: Engineer4Free;https://www.youtube.com/watch?v=d7tX37j-iHU;License: Standard Youtube License