
Calculus (MindTap Course List)
11th Edition
ISBN: 9781337275347
Author: Ron Larson, Bruce H. Edwards
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 11.1, Problem 74E
To determine
The component form of the vector v such that ‖ u ‖ = 4 , θ = 30 ∘ , ‖ u + v ‖ = 6 , θ = 120 ∘ .
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Provethat
a) prove that for any irrational numbers there exists?
asequence of rational numbers Xn converg to S.
b) let S: RR be a sunctions-t.
f(x)=(x-1) arc tan (x), xe Q
3(x-1)
1+x²
x&Q
Show that lim f(x)= 0
14x
C) For any set A define the set -A=y
Q2: Find the interval and radius of convergence for the following series:
Σ
n=1
(-1)η-1
xn
n
8. Evaluate arctan x dx
a) xartanx
2
2
In(1 + x²) + C b) xartanx + 1½-3ln(1 + x²) + C c) xartanx + In(1 + x²) + C d)
(arctanx)²
+ C
2
9) Evaluate Inx³ dx
3
a) +C b) ln x² + C c)¾½ (lnx)² d) 3x(lnx − 1) + C
-
x
10) Determine which integral is obtained when the substitution x =
So¹² √1 - x²dx
sine is made in the integral
πT
π
π
a) √ sin cos e de b) √ cos² de c) c
Ꮎ Ꮎ
cos² 0 de c)
cos e de d) for cos² e de
πT
11. Evaluate tan³xdx
1
a) b) c) [1 - In 2]
2
2
c) [1 − In2] d)½½[1+ In 2]
Chapter 11 Solutions
Calculus (MindTap Course List)
Ch. 11.1 - CONCEPT CHECK Scalar and Vector Describe the...Ch. 11.1 - Prob. 2ECh. 11.1 - Sketching a Vector In Exercises 3 and 4, (a) find...Ch. 11.1 - Prob. 4ECh. 11.1 - Prob. 5ECh. 11.1 - Prob. 6ECh. 11.1 - Prob. 7ECh. 11.1 - Prob. 8ECh. 11.1 - Prob. 9ECh. 11.1 - Writing a Vector in Different Forms In Exercises...
Ch. 11.1 - Prob. 11ECh. 11.1 - Prob. 12ECh. 11.1 - Prob. 13ECh. 11.1 - Prob. 14ECh. 11.1 - Prob. 15ECh. 11.1 - Prob. 16ECh. 11.1 - Prob. 17ECh. 11.1 - Prob. 18ECh. 11.1 - Prob. 19ECh. 11.1 - Prob. 20ECh. 11.1 - Prob. 21ECh. 11.1 - Prob. 22ECh. 11.1 - Prob. 23ECh. 11.1 - Prob. 24ECh. 11.1 - Sketching Scalar MultipliesIn Exercises 25 and 26,...Ch. 11.1 - Prob. 26ECh. 11.1 - Prob. 27ECh. 11.1 - Prob. 28ECh. 11.1 - Prob. 29ECh. 11.1 - Prob. 30ECh. 11.1 - Prob. 31ECh. 11.1 - Prob. 32ECh. 11.1 - Prob. 33ECh. 11.1 - Prob. 34ECh. 11.1 - Prob. 35ECh. 11.1 - Finding a Unit Vector In Exercises 35-38, find the...Ch. 11.1 - Prob. 37ECh. 11.1 - Prob. 38ECh. 11.1 - Finding MagnitudesIn Exercises 3942, find the...Ch. 11.1 - Finding Magnitudes In Exercises 39-42, find the...Ch. 11.1 - Prob. 41ECh. 11.1 - Prob. 42ECh. 11.1 - Prob. 43ECh. 11.1 - Prob. 44ECh. 11.1 - Prob. 45ECh. 11.1 - Prob. 46ECh. 11.1 - Prob. 47ECh. 11.1 - Prob. 48ECh. 11.1 - Prob. 49ECh. 11.1 - Prob. 50ECh. 11.1 - Prob. 51ECh. 11.1 - Prob. 52ECh. 11.1 - Finding a Vector In Exercises 53-56, find the...Ch. 11.1 - Prob. 54ECh. 11.1 - Prob. 55ECh. 11.1 - Prob. 56ECh. 11.1 - Prob. 57ECh. 11.1 - Prob. 58ECh. 11.1 - Prob. 59ECh. 11.1 - Prob. 60ECh. 11.1 - Finding Values In Exercises 61-66, And a and b...Ch. 11.1 - Prob. 62ECh. 11.1 - Prob. 63ECh. 11.1 - Prob. 64ECh. 11.1 - Prob. 65ECh. 11.1 - Prob. 66ECh. 11.1 - Prob. 67ECh. 11.1 - Prob. 68ECh. 11.1 - Prob. 69ECh. 11.1 - Prob. 70ECh. 11.1 - Finding Unit Vectors In Exercises 67-72, find a...Ch. 11.1 - Prob. 72ECh. 11.1 - Finding a Vector In Exercises 73 and 74, find the...Ch. 11.1 - Prob. 74ECh. 11.1 - Prob. 75ECh. 11.1 - Numerical and Graphical Analysis Forces with...Ch. 11.1 - Prob. 77ECh. 11.1 - Prob. 78ECh. 11.1 - Cable Tension In Exercises 79 and 80, determine...Ch. 11.1 - Cable TensionIn Exercises 79 and 80, determine the...Ch. 11.1 - Projectile Motion A gun with a muzzle velocity of...Ch. 11.1 - Prob. 82ECh. 11.1 - Navigation A plane is flying with a bearing of...Ch. 11.1 - NavigationA plane flies at a constant groundspeed...Ch. 11.1 - Prob. 85ECh. 11.1 - Prob. 86ECh. 11.1 - Prob. 87ECh. 11.1 - Prob. 88ECh. 11.1 - Prob. 89ECh. 11.1 - Prob. 90ECh. 11.1 - Prob. 91ECh. 11.1 - Prob. 92ECh. 11.1 - Prob. 93ECh. 11.1 - Prob. 94ECh. 11.1 - Prob. 95ECh. 11.1 - Prob. 96ECh. 11.1 - Prob. 97ECh. 11.1 - Prob. 98ECh. 11.1 - Prob. 99ECh. 11.1 - Prob. 100ECh. 11.2 - CONCEPT CHECK Describing Coordinates A point in...Ch. 11.2 - Prob. 2ECh. 11.2 - Prob. 3ECh. 11.2 - Prob. 4ECh. 11.2 - Prob. 5ECh. 11.2 - Prob. 6ECh. 11.2 - Prob. 7ECh. 11.2 - Prob. 8ECh. 11.2 - Prob. 9ECh. 11.2 - Prob. 10ECh. 11.2 - Finding Coordinates of a PointIn Exercises 912,...Ch. 11.2 - Prob. 12ECh. 11.2 - Prob. 13ECh. 11.2 - Prob. 14ECh. 11.2 - Prob. 15ECh. 11.2 - Prob. 16ECh. 11.2 - Prob. 17ECh. 11.2 - Prob. 18ECh. 11.2 - Prob. 19ECh. 11.2 - Prob. 20ECh. 11.2 - Prob. 21ECh. 11.2 - Prob. 22ECh. 11.2 - Prob. 23ECh. 11.2 - Prob. 24ECh. 11.2 - Prob. 25ECh. 11.2 - Prob. 26ECh. 11.2 - Prob. 27ECh. 11.2 - Prob. 28ECh. 11.2 - Classifying a TriangleIn Exercises 2932, find the...Ch. 11.2 - Prob. 30ECh. 11.2 - Prob. 31ECh. 11.2 - Prob. 32ECh. 11.2 - Finding the Midpoint In Exercises 33-36, find the...Ch. 11.2 - Prob. 34ECh. 11.2 - Prob. 35ECh. 11.2 - Prob. 36ECh. 11.2 - Prob. 37ECh. 11.2 - Prob. 38ECh. 11.2 - Prob. 39ECh. 11.2 - Prob. 40ECh. 11.2 - Prob. 41ECh. 11.2 - Prob. 42ECh. 11.2 - Finding the Equation of a SphereIn Exercises 4346,...Ch. 11.2 - Finding the Equation of a SphereIn Exercises 4346,...Ch. 11.2 - Finding the Equation of a SphereIn Exercises 4346,...Ch. 11.2 - Finding the Equation of a Sphere In Exercises...Ch. 11.2 - Prob. 47ECh. 11.2 - Prob. 48ECh. 11.2 - Prob. 49ECh. 11.2 - Prob. 50ECh. 11.2 - Finding the Component Form of a Vector in SpaceIn...Ch. 11.2 - Prob. 52ECh. 11.2 - Prob. 53ECh. 11.2 - Prob. 54ECh. 11.2 - Prob. 55ECh. 11.2 - Prob. 56ECh. 11.2 - Prob. 57ECh. 11.2 - Prob. 58ECh. 11.2 - Prob. 59ECh. 11.2 - Prob. 60ECh. 11.2 - Prob. 61ECh. 11.2 - Prob. 62ECh. 11.2 - Prob. 63ECh. 11.2 - Prob. 64ECh. 11.2 - Prob. 65ECh. 11.2 - Prob. 66ECh. 11.2 - Prob. 67ECh. 11.2 - Prob. 68ECh. 11.2 - Prob. 69ECh. 11.2 - Prob. 70ECh. 11.2 - Prob. 71ECh. 11.2 - Prob. 72ECh. 11.2 - Prob. 73ECh. 11.2 - Prob. 74ECh. 11.2 - Prob. 75ECh. 11.2 - Prob. 76ECh. 11.2 - Prob. 77ECh. 11.2 - Prob. 78ECh. 11.2 - Prob. 79ECh. 11.2 - Prob. 80ECh. 11.2 - Prob. 81ECh. 11.2 - Prob. 82ECh. 11.2 - Prob. 83ECh. 11.2 - Prob. 84ECh. 11.2 - Prob. 85ECh. 11.2 - Prob. 86ECh. 11.2 - Prob. 87ECh. 11.2 - Sketching a Vector In Exercises 87 und 88, sketch...Ch. 11.2 - Prob. 89ECh. 11.2 - Prob. 90ECh. 11.2 - Prob. 91ECh. 11.2 - Prob. 92ECh. 11.2 - Prob. 93ECh. 11.2 - Prob. 94ECh. 11.2 - Prob. 95ECh. 11.2 - Prob. 96ECh. 11.2 - Prob. 97ECh. 11.2 - Prob. 98ECh. 11.2 - Auditorium Lights The lights in an auditorium are...Ch. 11.2 - Prob. 100ECh. 11.2 - Load Supports Find the tension in each of the...Ch. 11.2 - Prob. 102ECh. 11.2 - Prob. 103ECh. 11.3 - Prob. 1ECh. 11.3 - Prob. 2ECh. 11.3 - Finding Dot ProductsIn Exercises 310, find (a) uv...Ch. 11.3 - Prob. 4ECh. 11.3 - Prob. 5ECh. 11.3 - Prob. 6ECh. 11.3 - Prob. 7ECh. 11.3 - Prob. 8ECh. 11.3 - Prob. 9ECh. 11.3 - Prob. 10ECh. 11.3 - Prob. 11ECh. 11.3 - Finding the Angle Between Two Vectors In Exercises...Ch. 11.3 - Finding the Angle Between Two Vectors In Exercises...Ch. 11.3 - Prob. 14ECh. 11.3 - Finding the Angle Between Two Vectors In Exercises...Ch. 11.3 - Finding the Angle Between Two Vectors In Exercises...Ch. 11.3 - Prob. 17ECh. 11.3 - Prob. 18ECh. 11.3 - Prob. 19ECh. 11.3 - Prob. 20ECh. 11.3 - Comparing VectorsIn Exercises 2126, determine...Ch. 11.3 - Prob. 22ECh. 11.3 - Prob. 23ECh. 11.3 - Comparing VectorsIn Exercises 2126, determine...Ch. 11.3 - Comparing VectorsIn Exercises 2126, determine...Ch. 11.3 - Prob. 26ECh. 11.3 - Prob. 27ECh. 11.3 - Prob. 28ECh. 11.3 - Prob. 29ECh. 11.3 - Prob. 30ECh. 11.3 - Prob. 31ECh. 11.3 - Prob. 32ECh. 11.3 - Prob. 33ECh. 11.3 - Prob. 34ECh. 11.3 - Prob. 35ECh. 11.3 - Prob. 36ECh. 11.3 - Prob. 37ECh. 11.3 - Finding the Projection of u onto v In Exercises...Ch. 11.3 - Prob. 39ECh. 11.3 - Prob. 40ECh. 11.3 - Prob. 41ECh. 11.3 - Prob. 42ECh. 11.3 - Prob. 43ECh. 11.3 - Prob. 44ECh. 11.3 - Prob. 45ECh. 11.3 - Projection What can be said about the vectors u...Ch. 11.3 - Projection When the projection of u onto v has the...Ch. 11.3 - Prob. 48ECh. 11.3 - Revenue The vector u= 3240,1450,2235 gives the...Ch. 11.3 - RevenueRepeat Exercises 49 after decreasing the...Ch. 11.3 - Prob. 51ECh. 11.3 - Prob. 52ECh. 11.3 - Prob. 53ECh. 11.3 - Prob. 54ECh. 11.3 - Prob. 55ECh. 11.3 - Prob. 56ECh. 11.3 - Prob. 57ECh. 11.3 - Prob. 58ECh. 11.3 - Prob. 59ECh. 11.3 - Prob. 60ECh. 11.3 - Prob. 61ECh. 11.3 - Prob. 62ECh. 11.3 - Prob. 63ECh. 11.3 - Prob. 64ECh. 11.3 - Prob. 65ECh. 11.3 - Prob. 66ECh. 11.3 - Prob. 67ECh. 11.3 - Prob. 68ECh. 11.3 - Proof Use vectors to prove that the diagonals of a...Ch. 11.3 - Proof Use vectors to prove that a parallelogram is...Ch. 11.3 - Bond AngleConsider a regular tetrahedron with...Ch. 11.3 - Prob. 72ECh. 11.3 - Prob. 73ECh. 11.3 - Prob. 74ECh. 11.3 - Proof Prove the Cauchy-Schwarz Inequality, uv u v...Ch. 11.4 - CONCEPT CHECK Vectors Explain what uv represents...Ch. 11.4 - CONCEPT CHECK Area Explain how to find the area of...Ch. 11.4 - Prob. 3ECh. 11.4 - Prob. 4ECh. 11.4 - Prob. 5ECh. 11.4 - Prob. 6ECh. 11.4 - Prob. 7ECh. 11.4 - Prob. 8ECh. 11.4 - Prob. 9ECh. 11.4 - Prob. 10ECh. 11.4 - Prob. 11ECh. 11.4 - Prob. 12ECh. 11.4 - Prob. 13ECh. 11.4 - Prob. 14ECh. 11.4 - Prob. 15ECh. 11.4 - Prob. 16ECh. 11.4 - Prob. 17ECh. 11.4 - Prob. 18ECh. 11.4 - Prob. 19ECh. 11.4 - Prob. 20ECh. 11.4 - Prob. 21ECh. 11.4 - Prob. 22ECh. 11.4 - Prob. 23ECh. 11.4 - Area In Exercises 23 and 24, verify that the...Ch. 11.4 - Prob. 25ECh. 11.4 - Prob. 26ECh. 11.4 - Torque The brakes on a bicycle are applied using a...Ch. 11.4 - Prob. 28ECh. 11.4 - Optimization A force of 180 pounds acts on the...Ch. 11.4 - Optimization A force of 56 pounds acts on the pipe...Ch. 11.4 - Prob. 31ECh. 11.4 - Prob. 32ECh. 11.4 - Prob. 33ECh. 11.4 - Prob. 34ECh. 11.4 - Volume In Exercises 35 and 36, use t triple scalar...Ch. 11.4 - Volume In Exercises 35 and 36, use t triple scalar...Ch. 11.4 - Volume In Exercises 37 and 38, find the volume of...Ch. 11.4 - Volume In Exercises 37 and 38, find the volume of...Ch. 11.4 - Prob. 39ECh. 11.4 - Prob. 40ECh. 11.4 - Prob. 41ECh. 11.4 - Prob. 42ECh. 11.4 - Prob. 43ECh. 11.4 - Prob. 44ECh. 11.4 - Prob. 45ECh. 11.4 - Prob. 46ECh. 11.4 - Prob. 47ECh. 11.4 - Prob. 48ECh. 11.4 - Prob. 49ECh. 11.4 - Prob. 50ECh. 11.4 - Proof In Exercises 47-52, prove the property of...Ch. 11.4 - Prob. 52ECh. 11.4 - Proof Prove that uv=uv if u and v are orthogonal.Ch. 11.4 - Prob. 54ECh. 11.4 - Prob. 55ECh. 11.5 - CONCEPT CHECK Parametric and Symmetric...Ch. 11.5 - Prob. 2ECh. 11.5 - Prob. 3ECh. 11.5 - CONCEPT CHECK Parallel Planes Explain how to find...Ch. 11.5 - Prob. 5ECh. 11.5 - Prob. 6ECh. 11.5 - Prob. 7ECh. 11.5 - Prob. 8ECh. 11.5 - Prob. 9ECh. 11.5 - Finding Parametric and Symmetric Equations In...Ch. 11.5 - Prob. 11ECh. 11.5 - Prob. 12ECh. 11.5 - Prob. 13ECh. 11.5 - Prob. 14ECh. 11.5 - Finding Parametric and Symmetric Equations In...Ch. 11.5 - Prob. 16ECh. 11.5 - Prob. 17ECh. 11.5 - Prob. 18ECh. 11.5 - Prob. 19ECh. 11.5 - Prob. 20ECh. 11.5 - Prob. 21ECh. 11.5 - Prob. 22ECh. 11.5 - Prob. 23ECh. 11.5 - Prob. 24ECh. 11.5 - Prob. 25ECh. 11.5 - Prob. 26ECh. 11.5 - Prob. 27ECh. 11.5 - Prob. 28ECh. 11.5 - Determining Parallel Lines In Exercises 29-32,...Ch. 11.5 - Determining Parallel Lines In Exercises 29-32,...Ch. 11.5 - Prob. 31ECh. 11.5 - Determining Parallel Lines In Exercises 29-32,...Ch. 11.5 - Finding a Point of IntersectionIn Exercises 3336,...Ch. 11.5 - Prob. 34ECh. 11.5 - Prob. 35ECh. 11.5 - Prob. 36ECh. 11.5 - Prob. 37ECh. 11.5 - Prob. 38ECh. 11.5 - Prob. 39ECh. 11.5 - Finding an Equation of a PlaneIn Exercises 3944,...Ch. 11.5 - Finding an Equation of a PlaneIn Exercises 3944,...Ch. 11.5 - Prob. 42ECh. 11.5 - Prob. 43ECh. 11.5 - Finding an Equation of a PlaneIn Exercises 3944,...Ch. 11.5 - Finding an Equation of a PlaneIn Exercises 4556,...Ch. 11.5 - Finding an Equation of a PlaneIn Exercises 4556,...Ch. 11.5 - Finding an Equation of a PlaneIn Exercises 4556,...Ch. 11.5 - Finding an Equation of a PlaneIn Exercises 4556,...Ch. 11.5 - Finding an Equation of a PlaneIn Exercises 4556,...Ch. 11.5 - Finding an Equation of a PlaneIn Exercises 4556,...Ch. 11.5 - Finding an Equation of a PlaneIn Exercises 4556,...Ch. 11.5 - Finding an Equation of a PlaneIn Exercises 4556,...Ch. 11.5 - Finding an Equation of a PlaneIn Exercises 4556,...Ch. 11.5 - Finding an Equation of a PlaneIn Exercises 4556,...Ch. 11.5 - Finding an Equation of a PlaneIn Exercises 4556,...Ch. 11.5 - Finding an Equation of a PlaneIn Exercises 4556,...Ch. 11.5 - Finding an Equation of a PlaneIn Exercises 5760,...Ch. 11.5 - Prob. 58ECh. 11.5 - Prob. 59ECh. 11.5 - Prob. 60ECh. 11.5 - Prob. 61ECh. 11.5 - Prob. 62ECh. 11.5 - Parallel PlanesIn Exercises 6164, determine...Ch. 11.5 - Prob. 64ECh. 11.5 - Intersection of PlanesIn Exercises 6568, (a) find...Ch. 11.5 - Intersection of PlanesIn Exercises 6568, (a) find...Ch. 11.5 - Intersection of PlanesIn Exercises 6568, (a) find...Ch. 11.5 - Prob. 68ECh. 11.5 - Prob. 69ECh. 11.5 - Prob. 70ECh. 11.5 - Prob. 71ECh. 11.5 - Prob. 72ECh. 11.5 - Prob. 73ECh. 11.5 - Prob. 74ECh. 11.5 - Prob. 75ECh. 11.5 - Prob. 76ECh. 11.5 - Prob. 77ECh. 11.5 - Prob. 78ECh. 11.5 - Prob. 79ECh. 11.5 - Prob. 80ECh. 11.5 - Prob. 81ECh. 11.5 - Prob. 82ECh. 11.5 - Intersection of a Plane and a LineIn Exercises...Ch. 11.5 - Prob. 84ECh. 11.5 - Prob. 85ECh. 11.5 - Prob. 86ECh. 11.5 - Prob. 87ECh. 11.5 - Prob. 88ECh. 11.5 - Prob. 89ECh. 11.5 - Prob. 90ECh. 11.5 - Prob. 91ECh. 11.5 - Prob. 92ECh. 11.5 - Prob. 93ECh. 11.5 - Finding the Distance Between Two Parallel PlanesIn...Ch. 11.5 - Prob. 95ECh. 11.5 - Prob. 96ECh. 11.5 - Prob. 97ECh. 11.5 - Prob. 98ECh. 11.5 - Prob. 99ECh. 11.5 - Prob. 100ECh. 11.5 - EXPLORING CONCEPTS PlanesConsider a line and a...Ch. 11.5 - Prob. 102ECh. 11.5 - Prob. 103ECh. 11.5 - HOW DO YOU SEE IT? Match the general equation with...Ch. 11.5 - Prob. 105ECh. 11.5 - Mechanical Design The figure shows a chute at the...Ch. 11.5 - DistanceTwo insects are crawling along different...Ch. 11.5 - Prob. 108ECh. 11.5 - Finding a Point of IntersectionFind the point of...Ch. 11.5 - Prob. 110ECh. 11.5 - Finding Parametric EquationsFind a set of...Ch. 11.5 - Prob. 112ECh. 11.5 - Prob. 113ECh. 11.5 - True or False? In Exercises 113118, determine...Ch. 11.5 - Prob. 115ECh. 11.5 - Prob. 116ECh. 11.5 - Prob. 117ECh. 11.5 - Prob. 118ECh. 11.6 - Prob. 1ECh. 11.6 - Prob. 2ECh. 11.6 - Prob. 3ECh. 11.6 - Prob. 4ECh. 11.6 - Prob. 5ECh. 11.6 - Matching In Exercises 5-10, match the equation...Ch. 11.6 - Prob. 7ECh. 11.6 - Prob. 8ECh. 11.6 - Prob. 9ECh. 11.6 - Prob. 10ECh. 11.6 - Prob. 11ECh. 11.6 - Prob. 12ECh. 11.6 - Prob. 13ECh. 11.6 - Sketching a Surface in SpaceIn Exercises 1114,...Ch. 11.6 - Prob. 15ECh. 11.6 - Prob. 16ECh. 11.6 - Prob. 17ECh. 11.6 - Prob. 18ECh. 11.6 - Prob. 19ECh. 11.6 - Prob. 20ECh. 11.6 - Prob. 21ECh. 11.6 - Prob. 22ECh. 11.6 - Prob. 23ECh. 11.6 - Prob. 24ECh. 11.6 - Prob. 25ECh. 11.6 - Prob. 26ECh. 11.6 - EXPLORING CONCEPTS HyperboloidExplain how to...Ch. 11.6 - Prob. 28ECh. 11.6 - Prob. 29ECh. 11.6 - Prob. 30ECh. 11.6 - Prob. 31ECh. 11.6 - Finding an Equation for a Surface of RevolutionIn...Ch. 11.6 - Finding an Equation for a Surface of RevolutionIn...Ch. 11.6 - Prob. 34ECh. 11.6 - Prob. 35ECh. 11.6 - Prob. 36ECh. 11.6 - Finding a Generating CurveIn Exercises 3740, find...Ch. 11.6 - Prob. 38ECh. 11.6 - Prob. 39ECh. 11.6 - Prob. 40ECh. 11.6 - Prob. 41ECh. 11.6 - Prob. 42ECh. 11.6 - Prob. 43ECh. 11.6 - Analyzing a TraceIn Exercises 43 and 44, analyze...Ch. 11.6 - Prob. 45ECh. 11.6 - Prob. 46ECh. 11.6 - Prob. 47ECh. 11.6 - Machine Design The top of a rubber bushing...Ch. 11.6 - Using a Hyperbolic ParaboloidDetermine the...Ch. 11.6 - Prob. 50ECh. 11.6 - Prob. 51ECh. 11.7 - Prob. 1ECh. 11.7 - Prob. 2ECh. 11.7 - Cylindrical-to-Rectangular ConversionIn Exercises...Ch. 11.7 - Cylindrical-to-Rectangular ConversionIn Exercises...Ch. 11.7 - Prob. 5ECh. 11.7 - Prob. 6ECh. 11.7 - Cylindrical-to-Rectangular ConversionIn Exercises...Ch. 11.7 - Prob. 8ECh. 11.7 - Prob. 9ECh. 11.7 - Prob. 10ECh. 11.7 - Prob. 11ECh. 11.7 - Prob. 12ECh. 11.7 - Prob. 13ECh. 11.7 - Prob. 14ECh. 11.7 - Prob. 15ECh. 11.7 - Prob. 16ECh. 11.7 - Prob. 17ECh. 11.7 - Rectangular-to-Cylindrical Conversion In Exercises...Ch. 11.7 - Prob. 19ECh. 11.7 - Prob. 20ECh. 11.7 - Prob. 21ECh. 11.7 - Prob. 22ECh. 11.7 - Cylindrical-to-Rectangular ConversionIn Exercises...Ch. 11.7 - Prob. 24ECh. 11.7 - Prob. 25ECh. 11.7 - Prob. 26ECh. 11.7 - Prob. 27ECh. 11.7 - Prob. 28ECh. 11.7 - Cylindrical-to-Rectangular ConversionIn Exercises...Ch. 11.7 - Prob. 30ECh. 11.7 - Prob. 31ECh. 11.7 - Rectangular-to-Spherical ConversionIn Exercises...Ch. 11.7 - Prob. 33ECh. 11.7 - Prob. 34ECh. 11.7 - Prob. 35ECh. 11.7 - Prob. 36ECh. 11.7 - Prob. 37ECh. 11.7 - Prob. 38ECh. 11.7 - Prob. 39ECh. 11.7 - Prob. 40ECh. 11.7 - Prob. 41ECh. 11.7 - Prob. 42ECh. 11.7 - Prob. 43ECh. 11.7 - Prob. 44ECh. 11.7 - Prob. 45ECh. 11.7 - Prob. 46ECh. 11.7 - Prob. 47ECh. 11.7 - Prob. 48ECh. 11.7 - Prob. 49ECh. 11.7 - Rectangular-to-Spherical ConversionIn Exercises...Ch. 11.7 - Prob. 51ECh. 11.7 - Prob. 52ECh. 11.7 - Prob. 53ECh. 11.7 - Prob. 54ECh. 11.7 - Prob. 55ECh. 11.7 - Prob. 56ECh. 11.7 - Prob. 57ECh. 11.7 - Prob. 58ECh. 11.7 - Prob. 59ECh. 11.7 - Prob. 60ECh. 11.7 - Prob. 61ECh. 11.7 - Prob. 62ECh. 11.7 - Prob. 63ECh. 11.7 - Prob. 64ECh. 11.7 - Prob. 65ECh. 11.7 - Prob. 66ECh. 11.7 - Prob. 67ECh. 11.7 - Prob. 68ECh. 11.7 - Prob. 69ECh. 11.7 - Prob. 70ECh. 11.7 - Prob. 71ECh. 11.7 - Prob. 72ECh. 11.7 - Prob. 73ECh. 11.7 - Prob. 74ECh. 11.7 - Prob. 75ECh. 11.7 - Prob. 76ECh. 11.7 - Spherical Coordinates Explain why in spherical...Ch. 11.7 - Prob. 78ECh. 11.7 - Prob. 79ECh. 11.7 - Prob. 80ECh. 11.7 - Prob. 81ECh. 11.7 - Prob. 82ECh. 11.7 - Prob. 83ECh. 11.7 - Prob. 84ECh. 11.7 - Prob. 85ECh. 11.7 - Prob. 86ECh. 11.7 - Prob. 87ECh. 11.7 - Prob. 88ECh. 11.7 - Prob. 89ECh. 11.7 - Prob. 90ECh. 11.7 - Prob. 91ECh. 11.7 - Sketching a Solid In Exercises 9194, sketch the...Ch. 11.7 - Prob. 93ECh. 11.7 - Prob. 94ECh. 11.7 - Prob. 95ECh. 11.7 - Prob. 96ECh. 11.7 - Prob. 97ECh. 11.7 - Prob. 98ECh. 11.7 - Prob. 99ECh. 11.7 - Prob. 100ECh. 11.7 - Prob. 101ECh. 11.7 - Prob. 102ECh. 11.7 - Intersection of SurfaceIdentify the curve of...Ch. 11.7 - Prob. 104ECh. 11 - Writing Vectors in Different Forms In Exercises 1...Ch. 11 - Prob. 2RECh. 11 - Prob. 3RECh. 11 - Prob. 4RECh. 11 - Prob. 5RECh. 11 - Prob. 6RECh. 11 - Prob. 7RECh. 11 - Prob. 8RECh. 11 - Prob. 9RECh. 11 - Prob. 10RECh. 11 - Prob. 11RECh. 11 - Prob. 12RECh. 11 - Prob. 13RECh. 11 - Prob. 14RECh. 11 - Prob. 15RECh. 11 - Prob. 16RECh. 11 - Prob. 17RECh. 11 - Prob. 18RECh. 11 - Prob. 19RECh. 11 - Prob. 20RECh. 11 - Prob. 21RECh. 11 - Prob. 22RECh. 11 - Prob. 23RECh. 11 - Prob. 24RECh. 11 - Prob. 25RECh. 11 - Prob. 26RECh. 11 - Prob. 27RECh. 11 - Prob. 28RECh. 11 - Prob. 29RECh. 11 - Prob. 30RECh. 11 - Prob. 31RECh. 11 - Prob. 32RECh. 11 - Finding a Unit VectorFind a unit vector that is...Ch. 11 - Prob. 34RECh. 11 - Prob. 35RECh. 11 - VolumeUse the triple scalar product to find the...Ch. 11 - Prob. 37RECh. 11 - Prob. 38RECh. 11 - Prob. 39RECh. 11 - Prob. 40RECh. 11 - Prob. 41RECh. 11 - Prob. 42RECh. 11 - Prob. 43RECh. 11 - Prob. 44RECh. 11 - Prob. 45RECh. 11 - Prob. 46RECh. 11 - Distance Find the distance between the planes...Ch. 11 - Prob. 48RECh. 11 - Prob. 49RECh. 11 - Prob. 50RECh. 11 - Prob. 51RECh. 11 - Prob. 52RECh. 11 - Prob. 53RECh. 11 - Prob. 54RECh. 11 - Prob. 55RECh. 11 - Prob. 56RECh. 11 - Prob. 57RECh. 11 - Prob. 58RECh. 11 - Prob. 59RECh. 11 - Prob. 60RECh. 11 - Prob. 61RECh. 11 - Prob. 62RECh. 11 - Prob. 63RECh. 11 - Prob. 64RECh. 11 - Prob. 65RECh. 11 - Prob. 66RECh. 11 - Prob. 67RECh. 11 - Prob. 68RECh. 11 - Prob. 69RECh. 11 - Prob. 70RECh. 11 - Prob. 71RECh. 11 - Prob. 72RECh. 11 - Prob. 1PSCh. 11 - Prob. 2PSCh. 11 - Prob. 3PSCh. 11 - Prob. 4PSCh. 11 - Prob. 5PSCh. 11 - Prob. 6PSCh. 11 - Volume (a) Find the volume of the solid bounded...Ch. 11 - Prob. 8PSCh. 11 - Prob. 9PSCh. 11 - Prob. 10PSCh. 11 - Sketching Graphs Sketch the graph of each equation...Ch. 11 - Prob. 12PSCh. 11 - Tetherball A tetherball weighing 1 pound is pulled...Ch. 11 - Towing A loaded barge is being towed by two...Ch. 11 - Prob. 15PSCh. 11 - Latitude-Longitude SystemLos Angeles is located at...Ch. 11 - Distance Between a Point and a PlaneConsider the...Ch. 11 - Prob. 18PSCh. 11 - Prob. 19PS
Knowledge Booster
Similar questions
- 12. Evaluate ſ √9-x2 -dx. x2 a) C 9-x2 √9-x2 - x2 b) C - x x arcsin ½-½ c) C + √9 - x² + arcsin x d) C + √9-x2 x2 13. Find the indefinite integral S cos³30 √sin 30 dᎾ . 2√√sin 30 (5+sin²30) √sin 30 (3+sin²30) a) C+ √sin 30(5-sin²30) b) C + c) C + 5 5 5 10 d) C + 2√√sin 30 (3-sin²30) 2√√sin 30 (5-sin²30) e) C + 5 15 14. Find the indefinite integral ( sin³ 4xcos 44xdx. a) C+ (7-5cos24x)cos54x b) C (7-5cos24x)cos54x (7-5cos24x)cos54x - 140 c) C - 120 140 d) C+ (7-5cos24x)cos54x e) C (7-5cos24x)cos54x 4 4 15. Find the indefinite integral S 2x2 dx. ex - a) C+ (x²+2x+2)ex b) C (x² + 2x + 2)e-* d) C2(x²+2x+2)e¯* e) C + 2(x² + 2x + 2)e¯* - c) C2x(x²+2x+2)e¯*arrow_forward4. Which substitution would you use to simplify the following integrand? S a) x = sin b) x = 2 tan 0 c) x = 2 sec 3√√3 3 x3 5. After making the substitution x = = tan 0, the definite integral 2 2 3 a) ៖ ស្លឺ sin s π - dᎾ 16 0 cos20 b) 2/4 10 cos 20 π sin30 6 - dᎾ c) Π 1 cos³0 3 · de 16 0 sin20 1 x²√x²+4 3 (4x²+9)2 π d) cos²8 16 0 sin³0 dx d) x = tan 0 dx simplifies to: de 6. In order to evaluate (tan 5xsec7xdx, which would be the most appropriate strategy? a) Separate a sec²x factor b) Separate a tan²x factor c) Separate a tan xsecx factor 7. Evaluate 3x x+4 - dx 1 a) 3x+41nx + 4 + C b) 31n|x + 4 + C c) 3 ln x + 4+ C d) 3x - 12 In|x + 4| + C x+4arrow_forward1. Abel's Theorem. The goal in this problem is to prove Abel's theorem by following a series of steps (each step must be justified). Theorem 0.1 (Abel's Theorem). If y1 and y2 are solutions of the differential equation y" + p(t) y′ + q(t) y = 0, where p and q are continuous on an open interval, then the Wronskian is given by W (¥1, v2)(t) = c exp(− [p(t) dt), where C is a constant that does not depend on t. Moreover, either W (y1, y2)(t) = 0 for every t in I or W (y1, y2)(t) = 0 for every t in I. 1. (a) From the two equations (which follow from the hypotheses), show that y" + p(t) y₁ + q(t) y₁ = 0 and y½ + p(t) y2 + q(t) y2 = 0, 2. (b) Observe that Hence, conclude that (YY2 - Y1 y2) + P(t) (y₁ Y2 - Y1 Y2) = 0. W'(y1, y2)(t) = yY2 - Y1 y2- W' + p(t) W = 0. 3. (c) Use the result from the previous step to complete the proof of the theorem.arrow_forward
- 2. Observations on the Wronskian. Suppose the functions y₁ and y2 are solutions to the differential equation p(x)y" + q(x)y' + r(x) y = 0 on an open interval I. 1. (a) Prove that if y₁ and y2 both vanish at the same point in I, then y₁ and y2 cannot form a fundamental set of solutions. 2. (b) Prove that if y₁ and y2 both attain a maximum or minimum at the same point in I, then y₁ and Y2 cannot form a fundamental set of solutions. 3. (c) show that the functions & and t² are linearly independent on the interval (−1, 1). Verify that both are solutions to the differential equation t² y″ – 2ty' + 2y = 0. Then justify why this does not contradict Abel's theorem. 4. (d) What can you conclude about the possibility that t and t² are solutions to the differential equation y" + q(x) y′ + r(x)y = 0?arrow_forwardQuestion 4 Find an equation of (a) The plane through the point (2, 0, 1) and perpendicular to the line x = y=2-t, z=3+4t. 3t, (b) The plane through the point (3, −2, 8) and parallel to the plane z = x+y. (c) The plane that contains the line x = 1+t, y = 2 − t, z = 4 - 3t and is parallel to the plane 5x + 2y + z = 1. (d) The plane that passes through the point (1,2,3) and contains the line x = 3t, y = 1+t, and z = 2-t. (e) The plane that contains the lines L₁: x = 1 + t, y = 1 − t, z = 2t and L2 : x = 2 − s, y = s, z = 2.arrow_forwardPlease find all values of x.arrow_forward
- 3. Consider the initial value problem 9y" +12y' + 4y = 0, y(0) = a>0: y′(0) = −1. Solve the problem and find the value of a such that the solution of the initial value problem is always positive.arrow_forward5. Euler's equation. Determine the values of a for which all solutions of the equation 5 x²y" + axy' + y = 0 that have the form (A + B log x) x* or Ax¹¹ + Bä” tend to zero as a approaches 0.arrow_forward4. Problem on variable change. The purpose of this problem is to perform an appropriate change of variables in order to reduce the problem to a second-order equation with constant coefficients. ty" + (t² − 1)y'′ + t³y = 0, 0arrow_forward
- 4. Some psychologists contend that the number of facts of a certain type that are remembered after t hours is given by f(t)== 90t 951-90 Find the rate at which the number of facts remembered is changing after 1 hour and after 10 hours. Interpret.arrow_forward12:05 MA S 58 58. If f(x) = ci.metaproxy.org 25 2xon [0, 10] and n is a positive integer, then there is some Riemann sum Sthat equals the exact area under the graph of ƒ from x = Oto x = 10. 59. If the area under the graph of fon [a, b] is equal to both the left sum L, and the right sum Rfor some positive integer n, then fis constant on [a, b]. 60. If ƒ is a decreasing function on [a, b], then the area under the graph of fis greater than the left sum Land less than the right sum R₂, for any positive integer n. Problems 61 and 62 refer to the following figure showing two parcels of land along a river: River Parcel 2 Parcel 1 h(x) 500 ft 1,000 ft. Figure for 61 and 62 61. You want to purchase both parcels of land shown in the figure and make a quick check on their combined area. There is no equation for the river frontage, so you use the average of the left and right sums of rectangles covering the area. The 1,000-foot baseline is divided into 10 equal parts. At the end of each…arrow_forwardIf a snowball melts so that its surface area decreases at a rate of 10 cm²/min, find the rate (in cm/min) at which the diameter decreases when the diameter is 12 cm. (Round your answer to three decimal places.) cm/minarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning

Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning