University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 81AP
Repeat the preceding problem for a hollow sphere of the same radius and mass and initial speed. Explain the differences in the results.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 6: Consider two cylindrical objects of the same mass and radius. Object A is a solid cylinder, whereas object B is a hollow cylinder.
A 3.0 kg cylinder falls from rest through a distance of 6.0 m in an evacuated tube near the surface of the earth. What is its spee after the cylinder has fallen the 6.0 m distance?
You are riding your bicycle on a city street, and you are staying a constant distance behind a car that is traveling at the speed limit of 30 mph. Estimate the diameters of the bicycle wheels and sprockets and use these estimated quantities to calculate the number of revolutions per minute made by the large sprocket to which the pedals are attached. Do a Web search if you aren’t familiar with the parts of a bicycle.
Chapter 11 Solutions
University Physics Volume 1
Ch. 11 - Check Your Understanding A hollow cylinder is on...Ch. 11 - Check Your Understanding A proton spiraling around...Ch. 11 - Check Your Understanding Which has greater angular...Ch. 11 - Check Your Understanding A merry-go-round at a...Ch. 11 - Check Your Understanding A top has a precession...Ch. 11 - Can a round object released from rest at the top...Ch. 11 - A cylindrical can of radius R is rolling across a...Ch. 11 - A wheel is released from the top on an incline. Is...Ch. 11 - Which rolls down an inclined plane faster, a...Ch. 11 - A hollow sphere and a hollow cylinder of the same...
Ch. 11 - Can you assign an angular momentum to a particle...Ch. 11 - For a particle traveling in a straight line, are...Ch. 11 - Under what conditions does a rigid body have...Ch. 11 - If a particle is moving with respect to a chosen...Ch. 11 - If you know the velocity of a particle, can you...Ch. 11 - What is the purpose of the small propeller at the...Ch. 11 - Suppose a child walks from the outer edge of a...Ch. 11 - As the rope of a tethered ball winds around a...Ch. 11 - Suppose the polar ice sheets broke free and...Ch. 11 - Explain why stars spin faster when they collapse.Ch. 11 - Competitive divers pull their limbs in and curl up...Ch. 11 - Gyroscopes used in guidance systems to indicate...Ch. 11 - Earth precesses about its vertical axis with a...Ch. 11 - What is the angular velocity of a 75.0-cm-diameter...Ch. 11 - A boy rides his bicycle 2.00 km. The wheels have...Ch. 11 - If the boy on the bicycle in the preceding problem...Ch. 11 - Formula One race cars have 66-cm-diameter tires....Ch. 11 - A marble rolls down an incline at 30 from rest....Ch. 11 - Repeat the preceding problem replacing the marble...Ch. 11 - A rigid body with a cylindrical cross-section is...Ch. 11 - A yo-yo can be thought of a solid cylinder of mass...Ch. 11 - A solid cylinder of radius 10.0 cm rolls down an...Ch. 11 - A bowling ball rolls up a ramp 0.5 m high without...Ch. 11 - A 40.0-kg solid cylinder is rolling across a...Ch. 11 - A 40.0-kg solid sphere is rolling across a...Ch. 11 - A solid cylinder rolls up an incline at an angle...Ch. 11 - A solid cylindrical wheel of mass M and radius R...Ch. 11 - A hollow cylinder that is rolling without slipping...Ch. 11 - A 0.2-kg particle is travelling along the line...Ch. 11 - A bird flies overhead from where you stand at an...Ch. 11 - A Formula One race car with mass 750.0 kg is...Ch. 11 - A particle of mass 5.0 kg has position vector at a...Ch. 11 - Use the right-hand rule to determine the...Ch. 11 - Suppose the particles in the preceding problem...Ch. 11 - Two particles of equal mass travel with the same...Ch. 11 - An airplane of mass 4.0104kg flies horizontally at...Ch. 11 - At a particular instant, a 1.0-kg particle’s...Ch. 11 - Prob. 43PCh. 11 - (a) Calculate the angular momentum of Earth in its...Ch. 11 - A boulder of mass 20 kg and radius 20 cm rolls...Ch. 11 - A satellite is spinning at 6.0 rev/s. The...Ch. 11 - A propeller consists of two blades each 3.0 m in...Ch. 11 - A pulsar is a rapidly rotating neutron star. The...Ch. 11 - The blades of a wind turbine are 30 m in length...Ch. 11 - A roller coaster has mass 3000.0 kg and needs to...Ch. 11 - A mountain biker takes a jump in a race and goes...Ch. 11 - Conservation of Angular Momentum 52.A disk of mass...Ch. 11 - The Sun’s mass is 2.01030kg , its radius is...Ch. 11 - A cylinder with rotational inertia I1=2.0kgm2...Ch. 11 - A diver off the high board imparts an initial...Ch. 11 - An Earth satellite has its apogee at 2500 km above...Ch. 11 - A Molniya orbit is a highly eccentric orbit of a...Ch. 11 - Shown below is a small particle of mass 20 g that...Ch. 11 - A bug of mass 0.020 kg is at rest on the edge of a...Ch. 11 - A uniform rod of mass 200 g and length 100 cm is...Ch. 11 - A merry-go-round has a radius of 2.0 m and a...Ch. 11 - A playground merry-go-round has a mass of 120 kg...Ch. 11 - Three children are riding on the edge of a...Ch. 11 - (a) Calculate the angular momentum of an ice...Ch. 11 - Twin skaters approach one another as shown below...Ch. 11 - A baseball catcher extends his arm straight up to...Ch. 11 - In 2015, in Warsaw, Poland, Olivia Oliver of Nova...Ch. 11 - A satellite in a geosynchronous circular orbit is...Ch. 11 - A gymnast does cartwheels along the floor and then...Ch. 11 - The centrifuge at NASA Ames Research Center has a...Ch. 11 - A ride at a carnival has four spokes to which pods...Ch. 11 - An ice skater is preparing for a jump with turns...Ch. 11 - A space station consists of a giant rotating...Ch. 11 - Neptune has a mass of 1.01026kg and is 4.5109km...Ch. 11 - A gyroscope has a 0.5-kg disk that spins at 40...Ch. 11 - The precession angular velocity of a gyroscope is...Ch. 11 - The axis of Earth makes a 23.5 angle with a...Ch. 11 - A marble is rolling across the floor at a speed of...Ch. 11 - Repeat the preceding problem replacing the marble...Ch. 11 - The mass of a hoop of radius 1.0 m is 6.0 kg. It...Ch. 11 - Repeat the preceding problem for a hollow sphere...Ch. 11 - A particle has mass 0.5 kg and is traveling along...Ch. 11 - A 4.0-kg particle moves in a circle of radius 2.0...Ch. 11 - A proton is accelerated in a cyclotron to...Ch. 11 - (a) What is the angular momentum of the Moon in...Ch. 11 - A DVD is rotating at 500 rpm. What is the angular...Ch. 11 - A potter’s disk spins from rest up to 10 rev/s in...Ch. 11 - Suppose you start an antique car by exerting a...Ch. 11 - A solid cylinder of mass 2.0 kg and radius 20 cm...Ch. 11 - A boy stands at the center of a platform that is...Ch. 11 - Eight children each of mass 40 kg, climb on a...Ch. 11 - A thin meter stick of mass 150 g rotates around an...Ch. 11 - A satellite in the shape of a sphere of mass...Ch. 11 - A top has moment of inertia 3.2104kgm2 and radius...Ch. 11 - The truck shown below is initially at rest with...Ch. 11 - A bowling ball of radius 8.5 cm is tossed onto a...Ch. 11 - A small ball of mass 0.50 kg is attached by a...Ch. 11 - A bug flying horizontally at 1.0 m/s collides and...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Solution to the Fermi Paradox. Among the various possible solutions we have discussed for the Fermi paradox, wh...
Life in the Universe (4th Edition)
A force of magnitude Fo is applied to point M as shown. The force is always at a right angle to the bar. For ea...
Tutorials in Introductory Physics
Write each number in decimal form.
43. 5.5 × 10–11
Applied Physics (11th Edition)
Choose the best answer to each of the following. Explain your reasoning. If we represent the solar system on a ...
Cosmic Perspective Fundamentals
In this activity, we will use a representation of the atom in which a central nucleus containing the protons an...
Lecture- Tutorials for Introductory Astronomy
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A space probe is fired as a projectile from the Earths surface with an initial speed of 2.00 104 m/s. What will its speed be when it is very far from the Earth? Ignore atmospheric friction and the rotation of the Earth. P11.26 Ki+Ui=Kf+Uf12mvi2+GMEm(1rf1ri)=12mvf212vi2+GME(01RE)=12vf2orvf2=v122GMEREandvf=(v122GMERE)1/2,vf=[(2.00104)21.25108]1/2m/s=1.66104m/sarrow_forwardWhat is (a) the angular speed and (b) the linear speed of a point on Earth’s surface at latitude 30N . Take the radius of the Earth to be 6309 km. (c) At what latitude would your linear speed be 10 m/s?arrow_forwardA wad of sticky clay with mass m and velocity vi is fired at a solid cylinder of mass M and radius R (Fig. P10.75). The cylinder is initially at rest and is mounted on a fixed horizontal axle that runs through its center of mass. The line of motion of the projectile is perpendicular to the axle and at a distance d R from the center. (a) Find the angular speed of the system just after the clay strikes and sticks to the surface of the cylinder. (b) Is the mechanical energy of the claycylinder system constant in this process? Explain your answer. (c) Is the momentum of the claycylinder system constant in this process? Explain your answer. Figure P10.75arrow_forward
- Suppose the particles in the preceding problem have masses m1=0.10kg , m2=0.20kg , m3=0.30kg , m4=0.40kg . The velocities of the particles are . (a) Calculate the angular momentum of each particle about the origin. (b) What is the total angular momentum of the tour-particle system about the origin?arrow_forwardUse the right-hand rule to determine the directions of the angular momenta about the origin of the particles as shown below. The z-axis is out of the page.arrow_forwardAn Earth satellite has its apogee at 2500 km above the surface of Earth and perigee at 500 km above the surface of Earth. At apogee its speed is 730 m/s. What is its speed at perigee? Earth’s radius is 6370 km (see below).arrow_forward
- The centrifuge at NASA Ames Research Center has a radius of 8.8 m and can produce farces on its payload of 20 gs or 20 times the force of gravity on Earth. (a) What is the angular momentum of a 20-kg payload that experiences 10 gs in the centrifuge? (b) If the driver motor was turned off in (a) and the payload lost 10 kg, what would be its new spin rate, taking into account there are no frictional forces present?arrow_forwardA solid sphere of radius 10 cm is allowed to rotate freely about an axis. The sphere is given a sharp blow so that its center of mass starts from the position shown in the following figure with speed 15 cm/s. What is the maximum angle that the diameter makes with the vertical?arrow_forwardA small, spherical asteroid of mass 6500000 kg and radius 7.6 m is stationary. The unsuspecting space rock is tangentially impacted by a Tesla roadster (mass 1320 kg) going 119000 km/h. In the following questions, assume the asteroid is uniform density and the coordinate system is set at the center of the asteroid, with the z direction aligned with its rotation axis post-impact. a) What is the magnitude of the car's linear momentum? IP carl | carl = b) What is the magnitude of the angular momentum of the car relative to the rotation axis of the asteroid just before impact? wf = kg m/s = kg m²/s c) After impact, assume the car sticks to the side of the asteroid, and treat it as a point mass. If angular momentum is conserved, what is the final angular velocity of the asteroid? rad/sarrow_forward
- When some stars use up their fuel they undergo a catastropic explosion is called a supernova. The system blows much of the stars mass in th eform of a rapidly expanding spherical shell. AS a siple model of the supernova process assume that the star is a solid sphere that is initially rotating at 1.9 revolutions per day After the star explodes find the angular momentum in revolutions per day of the expanding supernova shell when the radius of the shell is 5.0 R. Assume the stars mass is contained in that shellarrow_forwardConservation of Angular Momentum Given data on two disks, such as masses and inner/outer diameters/radii, and the initial angular velocities of the 2 disks, use the conservation of angular momentum principle to calculate the common angular velocity after the two disks are allowed to contact each other and spin together. Or, given the common final angular velocity, solve for unknowns such as the initial angular velocity of one of the disks. Or, given data on the starting and final angular velocities and some data on the disks, solve for unknowns such as moments of inertia, masses or diameters/radii. EXAMPLE Two metal disks have masses m1=3.45 kg and m2=UNKNOWN kg, and each has a radius of 8.31 cm. (You may ignore the inner hole for both disks assume that it is very small.) They spin on cushions of air in a standard rotational dynamics apparatus. Initially, disk #1 is spinning counterclockwise at 6.02 rad/s and disk #2 is spinning clockwise at 2.50 rad/s. A pin is removed that drops disk…arrow_forwardA star originates as a large body of slowly rotating gas.Because of gravitational attraction, this large body of gas slowly decreases in size.You can assume that no external forces are acting.Which one of the following statements correctly describes what happens as the radius of the body of gas decreases? Both the moment of inertia and the angular velocity increase. Both the angular momentum and the angular velocity increase. The angular momentum increases and the angular velocity decreases. Both the angular momentum and the angular velocity decrease. The angular momentum remains constant and the angular velocity increases.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License