21st Century Astronomy
21st Century Astronomy
6th Edition
ISBN: 9780393428063
Author: Kay
Publisher: NORTON
bartleby

Videos

Question
Book Icon
Chapter 11, Problem 36QP

(a)

To determine

The effect on the tidal force of moon if the radius of moon increases and the mass remains the same.

(b)

To determine

The effect on the tidal force on moon if the radius of the moon is decreased.

(c)

To determine

The effect on the tidal force due to increase in the mass of the planet around which the moon orbits.

Blurred answer
Students have asked these similar questions
Let's use Kepler's laws for the inner planets. Use the following distances from the sun to calculate the orbital period for each of these planets. Express your answer in terms of Earth years to two significant figures. Note: Use Kepler's law directly. Don't just Google the answers, as they will be a little bit different. When you have calculated them, only submit the value for Mercury. Planet Distance from the sun Period of orbit around the sun Earth 150 million km ___ Earth years Mercury 58 million km ___ Earth years Venus 108 million km ___ Earth years Mars 228 million km ___ Earth years
We need to create a scale model of the solar system (by shrinking the sun down to the size of a basketball or ~30cm). First, we will need to scale down actual solar system dimensions (planet diameters and average orbital radiuses) by converting our units. There are two blank spaces in the table below. We will effectively fill in the missing data in the next set of questions. Use the example below to help you. Example: What is the scaled diameter of Mercury if the Sun is scaled to the size of a basketball (30 cm)? The actual diameter of Mercury is 4879 km The Sun's diameter is 1392000 km If the Sun is to be reduced to the size of a basketball, then the conversion we need for this equation will be: 30cm1392000km Here is how we run the conversion:      4879km×30cm1392000km=0.105cm    or    0.11cm if we were to round our answer. This means that if the sun in our model is the size of a basketball, Mercury is the size of a grain of sand. We can also see by looking at the table, that we would…
Let's use Kepler's laws for the inner planets. Use the following distances from the sun to calculate the orbital period for each of these planets. Express your answer in terms of Earth years to two significant figures. Answer for the highlighted planet in each question. Note: Use Kepler's law directly. Don't just Google the answers, as they will be a little bit different. When you have calculated them, only submit the value for Earth. Planet Distance from the sun Period of orbit around the sun Earth 150 million km ___ Earth years Mercury 58 million km ___ Earth years Venus 108 million km ___ Earth years Mars 228 million km ___ Earth years
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
The Solar System
Physics
ISBN:9781305804562
Author:Seeds
Publisher:Cengage
Text book image
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY