Essential University Physics: Volume 1 (3rd Edition)
3rd Edition
ISBN: 9780321993724
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 27E
A potter’s wheel with rotational inertia 6.40 kg · m2 is spinning freely at 19.0 rpm. The potter drops a 2.70-kg lump of clay onto the wheel, where it sticks 46.0 cm from the rotation axis. What’s the wheel’s subsequent angular speed?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A potter's wheel, with rotational inertia 42 kg⋅m2, is spinning freely at 40.0 rpm. The potter drops a lump of clay onto the wheel, where it sticks a distance 1.2 m from the rotational axis. If the subsequent angular speed of the wheel and clay is 32 rpm, what is the mass of the clay?
A cylinder with rotational inertia I1 = 3.4 kg · m2 rotates clockwise about a vertical axis through its center with angular speed ?1 = 5.4 rad/s.A second cylinder with rotational inertia I2 = 1.1 kg · m2rotates counterclockwise about the same axis with angular speed ?2 = 7.0 rad/s. If the cylinders couple so they have the same rotational axis, what is the angular speed of the combination (in rad/s)?
What percentage of the original kinetic energy is lost to friction?
A potter's wheel with a moment of inertia of 0.1 kg-m² is spinning freely at 35.17 rpm. The potter drops a small but
dense lump of clay onto the wheel, where it sticks a distance 0.31 m from the rotational axis. If the final angular
speed of the wheel and clay is 33.54 rpm, what is the mass of the clay?
Chapter 11 Solutions
Essential University Physics: Volume 1 (3rd Edition)
Ch. 11.1 - Youre standing on the sidewalk watching a car go...Ch. 11.2 - The figure shows four pairs of force and radius...Ch. 11.3 - The figure shows three particles with the same...Ch. 11.4 - You step onto an initially nonrotating turntable...Ch. 11.5 - You push horizontally at right angles to the shaft...Ch. 11 - Does Earths angular velocity vector point north or...Ch. 11 - Figure 11.12 shows four forces acting on a body....Ch. 11 - You stand with your right arm extended...Ch. 11 - Although it contains no parentheses, the...Ch. 11 - Whats the angle between two vectors if their dot...
Ch. 11 - Why does a tetherball move faster as it winds up...Ch. 11 - Why do helicopters have two rotors?Ch. 11 - A group of polar bears is standing around the edge...Ch. 11 - Tornadoes in the northern hemisphere rotate...Ch. 11 - Does a particle moving at constant speed in a...Ch. 11 - When you turn on a high-speed power tool such as a...Ch. 11 - Why is it easier to balance a basketball on your...Ch. 11 - A bug, initially at rest on a stationary,...Ch. 11 - If you increase the rotation rate of a precessing...Ch. 11 - A car is headed north at 70 km/h. Give the...Ch. 11 - If the car of Exercise 15 makes a 90 left turn...Ch. 11 - A wheel is spinning at 45 rpm with its axis...Ch. 11 - A wheel is spinning about a horizontal axis with...Ch. 11 - A 12-N force is applied at the point x = 3 m, y =...Ch. 11 - A force F=1.3i+2.7jN is applied at the point x =...Ch. 11 - When you hold your arm outstretched, its supported...Ch. 11 - Express the units of angular momentum (a) using...Ch. 11 - In the Olympic hammer throw, a contestant whirls a...Ch. 11 - A gymnast of rotational inertia 62 kg m2 is...Ch. 11 - A 640-g hoop 90 cm in diameter is rotating at 170...Ch. 11 - A 7.4-cm-diameter baseball has mass 145 g and is...Ch. 11 - A potters wheel with rotational inertia 6.40 kg ...Ch. 11 - A 3.0-m-diametcr merry-go-round with rotational...Ch. 11 - A uniform, spherical cloud of interstellar gas has...Ch. 11 - A skater has rotational inertia 4.2 kg m2 with...Ch. 11 - You slip a wrench over a bolt. Taking the origin...Ch. 11 - Vector A points 30 counterclockwise from the...Ch. 11 - A baseball player extends his arm straight up to...Ch. 11 - Prob. 34PCh. 11 - A weightlifters barbell consists of two 25-kg...Ch. 11 - Prob. 36PCh. 11 - Two identical 1800-kg cars are traveling in...Ch. 11 - The dot product of two vectors is half the...Ch. 11 - Biomechanical engineers have developed...Ch. 11 - Figure 11.15 shows the dimensions of a 880-g...Ch. 11 - As an automotive engineer, youre charged with...Ch. 11 - A turntable of radius 25 cm and rotational inertia...Ch. 11 - A 17-kg dog is standing on the edge of a...Ch. 11 - A physics student is standing on an initially...Ch. 11 - Youre choreographing your schools annual ice show....Ch. 11 - Find the angle between two vectors whose dot...Ch. 11 - A circular bird feeder 19 cm in radius has...Ch. 11 - A force F applied at the point x = 2.0 m, y = 0 m...Ch. 11 - Prob. 49PCh. 11 - Prob. 50PCh. 11 - Jumbo is back! Jumbo is the 4.8-Mg elephant from...Ch. 11 - An anemometer for measuring wind speeds consists...Ch. 11 - A turntable has rotational inertia I and is...Ch. 11 - A uniform, solid, spherical asteroid with mass 1.2...Ch. 11 - About 99.9% of the solar systems total mass lies...Ch. 11 - Youre a civil engineer for an advanced...Ch. 11 - In Fig. 11.18, the lower disk, of mass 440 g and...Ch. 11 - A massless spring with constant k is mounted on a...Ch. 11 - A solid ball of mass M and radius R is spinning...Ch. 11 - A time-dependent torque given by = a + b sin ct...Ch. 11 - Consider a rapidly spinning gyroscope whose axis...Ch. 11 - When a star like our Sun exhausts its fuel,...Ch. 11 - Pulsarsthe rapidly rotating neutron stars...Ch. 11 - Prob. 64PCh. 11 - Figure 11.22 shows a demonstration gyroscope,...Ch. 11 - Figure 11.22 shows a demonstration gyroscope,...Ch. 11 - Figure 11.22 shows a demonstration gyroscope,...Ch. 11 - Figure 11.22 shows a demonstration gyroscope,...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
The net electric flux crossing an open surface is never zero. True or false?
University Physics Volume 2
(a) What is the ratio of the strength of the gravitational force to that of the strong nuclear force? (b) What ...
College Physics
The setup depicted in Figure 4.6 is used in a diffraction experiment using X-rays of 0.26 nm wavelength. Constr...
Modern Physics
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Jeff, running outside to play, pushes on a swinging door, causing its motion to be briefly described by = t2 + 0.800 t + 2.00,where t is in seconds and is in radians. At t = 0 and at t = 1.50s, what are the a. angular position, b. angular speed, and c. angularacceleration of the door?arrow_forwardA disk 8.00 cm in radius rotates at a constant rate of 1200 rev/min about its central axis. Determine (a) its angular speed in radians per second, (b) the tangential speed at a point 3.00 cm from its center, (c) the radial acceleration of a point on the rim, and (d) the total distance a point on the rim moves in 2.00 s.arrow_forwardThe velocity of a particle of mass m = 2.00 kg is given by v= 5.10 + 2.40 m /s. What is the angular momentumof the particle around the origin when it is located atr= 8.60 3.70 m?arrow_forward
- A wheel 2.00 m in diameter lies in a vertical plane and rotates about its central axis with a constant angular acceleration of 4.00 rad/s2. The wheel starts at rest at t = 0, and the radius vector of a certain point P on the rim makes an angle of 57.3 with the horizontal at this time. At t = 2.00 s, find (a) the angular speed of the wheel and, for point P, (b) the tangential speed, (c) the total acceleration, and (d) the angular position.arrow_forwardIn testing an automobile tire for proper alignment, a technicianmarks a spot on the tire 0.200 m from the center. He then mountsthe tire in a vertical plane and notes that the radius vector to thespot is at an angle of 35.0 with the horizontal. Starting from rest,the tire is spun rapidly with a constant angular acceleration of 3.00 rad/s2. a. What is the angular speed of the wheel after 4.00 s? b. What is the tangential speed of the spot after 4.00 s? c. What is the magnitude of the total accleration of the spot after 4.00 s?" d. What is the angular position of the spot after 4.00 s?arrow_forwardLara is running just outside the circumference of a carousel, looking for her favorite horse to ride, with a constant angular speed of 1.00 rad/s. Just as she spots the horse, one-fourth of the circumference ahead of her, the carousel begins to move, accelerating from rest at 0.050 rad/s2. a. Taking the time when the carousel begins to move as t = 0, when will Lara catch up to the horse? b. Lara mistakenly passes the horse and keeps running at constant angular speed. If the carousel continues to accelerate at the same rate, when will the horse draw even with Lara again?arrow_forward
- A thin rod of length 2.65 m and mass 13.7 kg is rotated at anangular speed of 3.89 rad/s around an axis perpendicular to therod and through its center of mass. Find the magnitude of therods angular momentum.arrow_forwardA turntable (disk) of radius r = 26.0 cm and rotational inertia0.400 kg m2 rotates with an angular speed of 3.00 rad/s arounda frictionless, vertical axle. A wad of clay of mass m =0.250 kg drops onto and sticks to the edge of the turntable.What is the new angular speed of the turntable?arrow_forwardA student sits on a freely rotating stool holding two dumbbells, each of mass 3.00 kg (Fig. P10.56). When his arms are extended horizontally (Fig. P10.56a), the dumbbells are 1.00 m from the axis of rotation and the student rotates with an angular speed of 0.750 rad/s. The moment of inertia of the student plus stool is 3.00 kg m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.300 m from the rotation axis (Fig. P10.56b). (a) Find the new angular speed of the student. (b) Find the kinetic energy of the rotating system before and after he pulls the dumbbells inward. Figure P10.56arrow_forward
- A particle moves 3.0 m along a circle of radius 1.5 m. (a) Through what angle does it rotate? (b) If the particle makes this trip in 1.0 s at a constant speed, what is its angular velocity? (c) What is its acceleration?arrow_forwardA point on a rotating turntable 20.0 cm from the center accelerates from rest to a final speed of 0.700 m/s in 1.75 s. At t = 1.25 s, find the magnitude and direction of (a) the radial acceleration, (b) the tangential acceleration, and (c) the total acceleration of the point.arrow_forwardDuring a 6.0-s time interval, a fly-wheel with a constant angular acceleration turns through 500 radians that acquire an angular velocity of 100 rad/s. (a) What is the angular velocity at the beginning of the 6.0 s? (b) What is the angular acceleration of the fly-wheel?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Rotational Kinetic Energy; Author: AK LECTURES;https://www.youtube.com/watch?v=s5P3DGdyimI;License: Standard YouTube License, CC-BY