STANDALONE CODE MECHANICS OF MATERIALS-M
STANDALONE CODE MECHANICS OF MATERIALS-M
11th Edition
ISBN: 9780137605200
Author: HIBBELER
Publisher: PEARSON
bartleby

Videos

Textbook Question
Book Icon
Chapter 11, Problem 1RP

The cantilevered beam has a circular cross section. If it supports a force P at its end, determine its radius y as a function of x so that it is subjected to a constant maximum bending stress σallow throughout its length.

Chapter 11, Problem 1RP, The cantilevered beam has a circular cross section. If it supports a force P at its end, determine

Expert Solution & Answer
Check Mark
To determine

The radius y as a function of x.

Answer to Problem 1RP

The radius y as a function of x is [4Pπσallowx]13_

Explanation of Solution

Given information:

The force is P.

Calculation:

Sketch the free body diagram of cantilever beam as shown in Figure 1:

STANDALONE CODE MECHANICS OF MATERIALS-M, Chapter 11, Problem 1RP , additional homework tip  1

Let, M is the moment acting cantilever beam and V is the shear force.

Consider the length is x.

Refer to Figure 1:

Calculate the shear force as follows:

V=wx

Calculate the moment as shown below:

M=wx×x2=wx22

Sketch the calculated values as shown in Figure 2.

STANDALONE CODE MECHANICS OF MATERIALS-M, Chapter 11, Problem 1RP , additional homework tip  2

Write the section properties as follows:

Calculate the moment of inertia (I) as shown in below:

I=π4c4 (1)

Here, c is the radius of section.

Substitute y for c in Equation (1).

I=π4y4

Find the value of section modulus S as shown in below:

S=Ic (2)

Here, I is the moment of inertia and c is the centroid of section.

Substitute π4y4 for I and y for c in Equation (2).

S=π4y4y=π4y3

Calculate the allowable bending stress (σallow) as a function of x can be obtained by using flexural formula.

σ=MS (3)

Here, M is the moment.

Substitute Px for M and π4y3 for S in Equation (3).

σallow=Pxπ4y3π4y3(σallow)=Pxy=[4Pπσallowx]13

Hence, the radius y as a function of x is [4Pπσallowx]13_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The bar has a thickness of 0.5 in. and is subjected to a moment of 600 lb # ft. Determine the maximum bending stress in the bar.
If d = 470 mm, determine the absolute maximum bending stress in the beam.
If d = 450 mm, determine the absolute maximum bending stress in the overhanging beam.

Chapter 11 Solutions

STANDALONE CODE MECHANICS OF MATERIALS-M

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanics of Materials Lecture: Beam Design; Author: UWMC Engineering;https://www.youtube.com/watch?v=-wVs5pvQPm4;License: Standard Youtube License