
Concept explainers
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
- a. Given two
vectors u and v, it is always true that 2u + v = v + 2u. - b. The vector in the direction of u with the length of v equals the vector in the direction of v with the length of u.
- c. If u ≠ 0 and u + v = 0, then u and v are parallel.
- d. If r′(t) = 0, then r(t) = 〈a, b, c〉, where a, b, and c are real numbers.
- e. The parameterized curve r(t) = 〈5 cos t, 12 cos t, 13 sin t〉 has arc length as a parameter.
- f. The position vector and the principal unit normal are always parallel on a smooth curve.
a.

Answer to Problem 1RE
The given statement is true.
Explanation of Solution
Given:
“Given two vectors u and v, it is always true that
Formula used:
Suppose the vectors
Vector addition is
Scalar multiplication is
Commutative property
Calculation:
Suppose
Use vector addition and scalar multiplication to compute the value of
Thus, the component of the vector
Use vector addition and scalar multiplication to compute the value of
Thus, the component of the vector
From the equations (1) and (2), it is observed that
Therefore, the given statement is true.
b.

Answer to Problem 1RE
The given statement is false.
Explanation of Solution
Given:
“The vector in the direction of u with the length of v equals the vector in the direction of v with the length of u.”
Formula used:
Suppose the two vectors are u and v.
The unit vector in the direction of u with the length of v is
Calculation:
Suppose
Let x be the unit vector in the direction of u with the length of v.
Use the above mentioned formula to compute the vector x.
Thus, the vector x is
Let y be the unit vector in the direction of v with the length of u.
Use the above mentioned formula to compute the vector y.
Thus, the vector y is
From the equations (1) and (2), it is observed that both the vectors are not equal.
Therefore, the given statement is false.
c.

Answer to Problem 1RE
The given statement is true.
Explanation of Solution
Given:
“If
Result used:
The vectors u and v are said to be parallel vectors, if one vector is the scalar multiple of the other vector.
Calculation:
Consider
This implies that the vector u is −1 times the vector v. By the result of parallel vectors, the two vector u and v are parallel.
Therefore, the given statement is true.
d.

Answer to Problem 1RE
The given statement is true.
Explanation of Solution
Given:
“If
Calculation:
Consider
Thus, the vector
Therefore, the given statement is true.
e.

Answer to Problem 1RE
The given statement is false.
Explanation of Solution
Given:
“The parameterized curve
Formula used:
Suppose
Calculation:
Differentiate
Compute
Since
Therefore, the given statement is false.
f.

Answer to Problem 1RE
The given statement is false.
Explanation of Solution
Given:
“The position vector and the principal unit normal are always parallel on a smooth curve.”
Formula used:
Suppose r is a smooth parameterized curve and s is the arc length.
The unit tangent vector T is
The principal unit normal vector is
Calculation:
Counter example
Consider
Differentiate
Use magnitude formula to obtain the value of
On further simplification,
Use unit tangent formula to compute
Thus, the unit tangent vector
Differentiate
Use magnitude formula to obtain the value of
On further simplification,
Use principal unit normal formula to compute the value of
Thus, the principal unit normal vector
It is observed that the position vector and the principal unit normal vector are not equal.
Therefore, the given statement is false.
Want to see more full solutions like this?
Chapter 11 Solutions
Calculus: Early Transcendentals (2nd Edition)
- Find the area between the following curves. x=-4, x=2, y=ex, and y = 3 - ex Set up the integral (or integrals) needed to compute this area. Use the small (Type exact answers in terms of e.) 3 In 2 A. S √ [3-2e*] dx+ -4 2 S [2ex-3] dx 3 In 2 B. dx Find the area between the curves. Area = (Type an exact answer in terms of e.)arrow_forwardUse the definite integral to find the area between the x-axis and f(x) over the indicated interval. Check first to see if the graph crosses the x-axis in the given interval. f(x)=8-2x²: [0,4] Set up the integral (or integrals) needed to compute this area. Use the smallest possible number of integrals. Select the correct choice below and fill in the answer boxes to ○ A. dx B. 2 S 8-2x² dx+ 4 S 2 8-2x2 dx C. dx + S dx For the interval [0,4], the area between the x-axis and f(x) is (Type an integer or a simplified fraction.)arrow_forwardPollution from a factory is entering a lake. The rate of concentration of the pollutant at time t is 5 given by P'(t) = 126t², where t is the number of years since the factory started introducing pollutants into the lake. Ecologists estimate that the lake can accept a total level of pollution of 600 units before all the fish life in the lake ends. Can the factory operate for 2 years without killing all the fish in the lake? Set up the integral that would determine the pollution level after 2 years. 2 5 126t 2 dt Can the factory operate for 2 years without killing all the fish in the lake? Thee factory can operate for 2 years without killing all the fish in the lake because the value of the integral is , which is less than 600. (Round to the nearest integer as needed.)arrow_forward
- Use the definite integral to find the area between the x-axis and f(x) over the indicated interval. Check first to see if the graph crosses the x-axis in the given interval. f(x)=4x-12; [2,6] The area between the x-axis and f(x) is (Type an integer or a simplified fraction.)arrow_forwardEvaluate the definite integral. 70 √5√2-6 3 dz 70 S 5√2-6 dz= 7 江 (Type an integer or decimal rounded to two decimal places as needed.)arrow_forwardFind the area between the following curves. 2 y=x³-x²+x+4; y=5x² -7x+4 The area between the curves is (Simplify your answer.) ...arrow_forward
- Find the area of the shaded region. 3- -1 -3- Q The total area of the shaded regions is (Simplify your answer.) y=9-x² Q 1 3 5 Xarrow_forwardFind the area of the region bounded by the graphs of the given equations. y=17x, y=x² ... The area is (Type an integer or a simplified fraction.)arrow_forwardFind the area between the curves. y=x-26, y=9-2x ... The area between the curves is (Type an integer or decimal rounded to the nearest tenth as needed.)arrow_forward
- You are constructing a box out of cardboard with the dimensions 5 m by 6 m. You then cut equal-size squares from each corner so you may fold the edges. Let x be the side length of each square. Find that maximizes the volume of the box. Answer exactly. 8 x x H x ४ x ४ ४ marrow_forward× Question 2 ▾ Score on last try: 0 of 1 pts. See Details for more. > Next question You can retry this question below Find two positive numbers x and y such that x + y = 14 and they minimize x² + y². x = Уarrow_forwardSup the is a -12 -10 -8 -6 -4 -2 16 Af(x) 8 -8- -16arrow_forward
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage Learning
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,




