Fundamentals of Aerodynamics
Fundamentals of Aerodynamics
6th Edition
ISBN: 9781259129919
Author: John D. Anderson Jr.
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 11, Problem 11.8P

Consider the flow over a circular cylinder; the incompressible flow over such a cylinder is discussed in Section 3.13. Consider also the flow over a sphere; the incompressible flow over a sphere is described in Section 6.4. The subsonic compressible flow over both the cylinder and the sphere is qualitatively similar but quantitatively different from their incompressible counterparts. Indeed, because of the “bluntness” of these bodies, their critical Mach numbers are relatively low. In particular:

For a cylinder: M c r = 0.404

For a sphere: M c r = 0.57

Explain on a physical basis why the sphere has a higher M c r , than the cylinder.

Blurred answer
Students have asked these similar questions
Problem 2 An unconfined supersonic flow passes over the contoured wall shown below. The wall segment AB is a 30° arc of a circle of radius R and wall segment is a 30° arc of a circle of radius R. Calculate the wall static pressures at B and C. Mo. = 2.0 P., = 1 bar == A B R 30° 30° R C
1. Consider a low-speed subsonic wind tunnel designed with a reservoir cross-sectional area A, = 2 m2 and a test-section cross-sectional area A2 = 0.5 m2. The pressure in the test section is P2 = 1 atm. Assume constant density equal to standard sea level density, calculate the pressure (in kPa) required in the reservoir, P1, necessary to achieve a flow velocity V2: 40 m/s in the test section. a. From item no. 1, calculate the mass flow rate (in kg/s) through the wind tunnel. b. Calculate the Mach number of the vehicle in air. c. Calculate the Mach number of the vehicle in hydrogen.
5.7 When the reservoir pressure and temperature of a supersonic wind tunnel are 15 atm and 750 K, respectively, the mass flow is 1.5 kg/s. If the reservoir conditions are changed to p, 20 atm and T, = 600 K, calculate the mass flow.
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License