The interval of convergence of the series
Answer to Problem 48E
The interval of convergence and the series converges absolutely is
Explanation of Solution
Given information:
The given series is
Formula used:
The ratio test is used.
Calculation:
The series of absolute values is
The ratio Test let
Then, the series converges if L < I, the series diverges if L >1 and the test is inconclusive if L=1
Using the ratio test, we check for absolute convergence as follows,
The series converges absolutely for
And diverges for
And when | x | = 1, the series is
This converges absolutely by the p-test
And when
This converges absolutely by the p-test
(a) Interval of convergence:
(b) Series converges absolutely on
(c) None
Conclusion:
The interval of convergence and the series converges absolutely is
Chapter 10 Solutions
Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
Additional Math Textbook Solutions
College Algebra (7th Edition)
Elementary Statistics (13th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
Elementary Statistics
Elementary Statistics: Picturing the World (7th Edition)
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning