
Calculus (MindTap Course List)
8th Edition
ISBN: 9781285740621
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10.5, Problem 2E
To determine
To find:
The vertex, focus and directrix of the parabola and sketch its graph.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Assignment #1
Q1: Test the following series for convergence. Specify the test you use:
1
n+5
(-1)n
a) Σn=o
√n²+1
b) Σn=1 n√n+3
c) Σn=1 (2n+1)3
3n
1
d) Σn=1 3n-1
e) Σn=1
4+4n
answer problem 1a, 1b, 1c, 1d, and 1e and show work/ explain how you got the answer
Provethat
a) prove that for any irrational numbers there exists?
asequence of rational numbers Xn converg to S.
b) let S: RR be a sunctions-t.
f(x)=(x-1) arc tan (x), xe Q
3(x-1)
1+x²
x&Q
Show that lim f(x)= 0
14x
C) For any set A define the set -A=y
Chapter 10 Solutions
Calculus (MindTap Course List)
Ch. 10.1 - 14 Sketch the curve by using the parametric...Ch. 10.1 - 14 Sketch the curve by using the parametric...Ch. 10.1 - 14 Sketch the curve by using the parametric...Ch. 10.1 - 14 Sketch the curve by using the parametric...Ch. 10.1 - Prob. 5ECh. 10.1 - Prob. 6ECh. 10.1 - Prob. 7ECh. 10.1 - Prob. 8ECh. 10.1 - Prob. 9ECh. 10.1 - Prob. 10E
Ch. 10.1 - 1118 a Eliminate the parameter to find a Cartesian...Ch. 10.1 - 1118 a Eliminate the parameter to find a Cartesian...Ch. 10.1 - 1118 a Eliminate the parameter to find a Cartesian...Ch. 10.1 - 1118 a Eliminate the parameter to find a Cartesian...Ch. 10.1 - 1118 a Eliminate the parameter to find a Cartesian...Ch. 10.1 - 1118 a Eliminate the parameter to find a Cartesian...Ch. 10.1 - 1118 a Eliminate the parameter to find a Cartesian...Ch. 10.1 - 1118 a Eliminate the parameter to find a Cartesian...Ch. 10.1 - 1922 Describe the motion of a particle with...Ch. 10.1 - 1922 Describe the motion of a particle with...Ch. 10.1 - 1922 Describe the motion of a particle with...Ch. 10.1 - Prob. 22ECh. 10.1 - Prob. 23ECh. 10.1 - Prob. 24ECh. 10.1 - 2527 Use the graphs of x=f(t) and y=g(t) to sketch...Ch. 10.1 - 2527 Use the graphs of x=f(t) and y=g(t) to sketch...Ch. 10.1 - Prob. 27ECh. 10.1 - Match the parametric equations with the graphs...Ch. 10.1 - Prob. 29ECh. 10.1 - Prob. 30ECh. 10.1 - a Show that the parametric equations...Ch. 10.1 - Use a graphing device and the result of Exercise...Ch. 10.1 - Prob. 33ECh. 10.1 - a Find parametric equations for the ellipse...Ch. 10.1 - Prob. 35ECh. 10.1 - Prob. 36ECh. 10.1 - Prob. 37ECh. 10.1 - 3738 Compare the curves represented by the...Ch. 10.1 - Prob. 39ECh. 10.1 - Prob. 40ECh. 10.1 - Prob. 41ECh. 10.1 - If a and b are fixed numbers, find parametric...Ch. 10.1 - A curve, called a witch of Maria Agnesi, consists...Ch. 10.1 - a Find parametric equations for the set of all...Ch. 10.1 - Suppose that the position of one particle at time...Ch. 10.1 - Prob. 46ECh. 10.1 - Prob. 47ECh. 10.1 - The swallowtail catastrophe curves are defined by...Ch. 10.1 - Prob. 49ECh. 10.1 - Prob. 50ECh. 10.1 - Prob. 51ECh. 10.1 - Prob. 52ECh. 10.2 - 12 Find dy/dx. x=t1+t,y=1+tCh. 10.2 - Prob. 2ECh. 10.2 - Prob. 3ECh. 10.2 - Prob. 4ECh. 10.2 - 36 Find and equation of the tangent to the curve...Ch. 10.2 - 36 Find and equation of the tangent to the curve...Ch. 10.2 - Prob. 7ECh. 10.2 - Prob. 8ECh. 10.2 - Prob. 9ECh. 10.2 - Prob. 10ECh. 10.2 - Prob. 11ECh. 10.2 - Prob. 12ECh. 10.2 - Prob. 13ECh. 10.2 - Prob. 14ECh. 10.2 - Prob. 15ECh. 10.2 - Prob. 16ECh. 10.2 - Prob. 17ECh. 10.2 - Prob. 18ECh. 10.2 - 1720 Find the points on the curve where the...Ch. 10.2 - Prob. 20ECh. 10.2 - Prob. 21ECh. 10.2 - Use a graph to estimate the coordinates of the...Ch. 10.2 - Prob. 23ECh. 10.2 - Prob. 24ECh. 10.2 - Prob. 25ECh. 10.2 - Prob. 26ECh. 10.2 - Prob. 27ECh. 10.2 - a Find the slope of the tangent to the astroid...Ch. 10.2 - Prob. 29ECh. 10.2 - Prob. 30ECh. 10.2 - Use the parametric equations of an ellipse,...Ch. 10.2 - Prob. 32ECh. 10.2 - Prob. 33ECh. 10.2 - Prob. 34ECh. 10.2 - Prob. 35ECh. 10.2 - Let R be the region enclosed by the loop of the...Ch. 10.2 - Prob. 37ECh. 10.2 - Prob. 38ECh. 10.2 - Prob. 39ECh. 10.2 - Prob. 40ECh. 10.2 - Prob. 41ECh. 10.2 - 4144 Find the exact length of the curve....Ch. 10.2 - Prob. 43ECh. 10.2 - Prob. 44ECh. 10.2 - 4546 Graph the curve and find its exact length....Ch. 10.2 - 4546 Graph the curve and find its exact length....Ch. 10.2 - Prob. 47ECh. 10.2 - Prob. 48ECh. 10.2 - Use Simpsons Rule with n=6 to estimate the length...Ch. 10.2 - Prob. 50ECh. 10.2 - Prob. 51ECh. 10.2 - Prob. 52ECh. 10.2 - Show that the total length of the ellipse...Ch. 10.2 - Find the total length of the astroid...Ch. 10.2 - Prob. 55ECh. 10.2 - Prob. 56ECh. 10.2 - Prob. 57ECh. 10.2 - 5760 Set up an integral that represents the area...Ch. 10.2 - Prob. 59ECh. 10.2 - Prob. 60ECh. 10.2 - Prob. 61ECh. 10.2 - 6163 Find the exact area of the surface obtained...Ch. 10.2 - 6163 Find the exact area of the surface obtained...Ch. 10.2 - Prob. 64ECh. 10.2 - Prob. 65ECh. 10.2 - Prob. 66ECh. 10.2 - If f is continuous and f(t)0 for atb, show that...Ch. 10.2 - Prob. 68ECh. 10.2 - The curvature at a point P of a curve is defined...Ch. 10.2 - Prob. 70ECh. 10.2 - Prob. 71ECh. 10.2 - Prob. 72ECh. 10.2 - A string is wound around a circle and then unwound...Ch. 10.2 - A cow is tied to a silo with radius r by a rope...Ch. 10.3 - Prob. 1ECh. 10.3 - Prob. 2ECh. 10.3 - Prob. 3ECh. 10.3 - Prob. 4ECh. 10.3 - Prob. 5ECh. 10.3 - Prob. 6ECh. 10.3 - Prob. 7ECh. 10.3 - Prob. 8ECh. 10.3 - Prob. 9ECh. 10.3 - Prob. 10ECh. 10.3 - Prob. 11ECh. 10.3 - Prob. 12ECh. 10.3 - Prob. 13ECh. 10.3 - Prob. 14ECh. 10.3 - Prob. 15ECh. 10.3 - Prob. 16ECh. 10.3 - Prob. 17ECh. 10.3 - Prob. 18ECh. 10.3 - 1520 Identify the curve by finding a Cartesian...Ch. 10.3 - 1520 Identify the curve by finding a Cartesian...Ch. 10.3 - Prob. 21ECh. 10.3 - Prob. 22ECh. 10.3 - Prob. 23ECh. 10.3 - Prob. 24ECh. 10.3 - Prob. 25ECh. 10.3 - Prob. 26ECh. 10.3 - Prob. 27ECh. 10.3 - Prob. 28ECh. 10.3 - Prob. 29ECh. 10.3 - Prob. 30ECh. 10.3 - Prob. 31ECh. 10.3 - Prob. 32ECh. 10.3 - Prob. 33ECh. 10.3 - Prob. 34ECh. 10.3 - Prob. 35ECh. 10.3 - Prob. 36ECh. 10.3 - Prob. 37ECh. 10.3 - Prob. 38ECh. 10.3 - Prob. 39ECh. 10.3 - Prob. 40ECh. 10.3 - Prob. 41ECh. 10.3 - Prob. 42ECh. 10.3 - Prob. 43ECh. 10.3 - Prob. 44ECh. 10.3 - Prob. 45ECh. 10.3 - Prob. 46ECh. 10.3 - Prob. 47ECh. 10.3 - Prob. 48ECh. 10.3 - Prob. 49ECh. 10.3 - Prob. 50ECh. 10.3 - Show that the curve r=sintan called a cissoid of...Ch. 10.3 - Prob. 52ECh. 10.3 - a In Example 11 the graphs suggest that the limaon...Ch. 10.3 - Prob. 54ECh. 10.3 - 5560 Find the slope of the tangent line to the...Ch. 10.3 - Prob. 56ECh. 10.3 - Prob. 57ECh. 10.3 - Prob. 58ECh. 10.3 - Prob. 59ECh. 10.3 - Prob. 60ECh. 10.3 - Prob. 61ECh. 10.3 - 6164 Find the points on the given curve where the...Ch. 10.3 - Prob. 63ECh. 10.3 - Prob. 64ECh. 10.3 - Prob. 65ECh. 10.3 - Show that the curves r=asin and r=acos intersect...Ch. 10.3 - Prob. 67ECh. 10.3 - Prob. 68ECh. 10.3 - Prob. 69ECh. 10.3 - Prob. 70ECh. 10.3 - Prob. 71ECh. 10.3 - Prob. 72ECh. 10.3 - Prob. 73ECh. 10.3 - Prob. 74ECh. 10.3 - Prob. 75ECh. 10.3 - Prob. 76ECh. 10.3 - Prob. 77ECh. 10.3 - Prob. 78ECh. 10.4 - 14 Find the area of the region that is bounded by...Ch. 10.4 - 14 Find the area of the region that is bounded by...Ch. 10.4 - 14 Find the area of the region that is bounded by...Ch. 10.4 - Prob. 4ECh. 10.4 - 58 Find the area of the shaded region. r2=sin2Ch. 10.4 - 58 Find the area of the shaded region. r=2+cosCh. 10.4 - 58 Find the area of the shaded region. r=4+3sinCh. 10.4 - 58 Find the area of the shaded region. r=ln, 12Ch. 10.4 - 912 Sketch the curve and find the area that it...Ch. 10.4 - 912 Sketch the curve and find the area that it...Ch. 10.4 - 912 Sketch the curve and find the area that it...Ch. 10.4 - 912 Sketch the curve and find the area that it...Ch. 10.4 - Prob. 13ECh. 10.4 - Prob. 14ECh. 10.4 - Prob. 15ECh. 10.4 - Prob. 16ECh. 10.4 - 1721 Find the area of the region enclosed by one...Ch. 10.4 - Prob. 18ECh. 10.4 - 1721 Find the area of the region enclosed by one...Ch. 10.4 - 1721 Find the area of the region enclosed by one...Ch. 10.4 - 1721 Find the area of the region enclosed by one...Ch. 10.4 - Find the area enclosed by the loop of the...Ch. 10.4 - Prob. 23ECh. 10.4 - 2328 Find the area of the region that lies inside...Ch. 10.4 - Prob. 25ECh. 10.4 - Prob. 26ECh. 10.4 - 2328 Find the area of the region that lies inside...Ch. 10.4 - Prob. 28ECh. 10.4 - 2934 Find the area of the region that lies inside...Ch. 10.4 - 2934 Find the area of the region that lies inside...Ch. 10.4 - Prob. 31ECh. 10.4 - Prob. 32ECh. 10.4 - Prob. 33ECh. 10.4 - Prob. 34ECh. 10.4 - Prob. 35ECh. 10.4 - Find the area between a larger loop and enclosed...Ch. 10.4 - Prob. 37ECh. 10.4 - 3742 Find all points of intersection of the given...Ch. 10.4 - 3742 Find all points of intersection of the given...Ch. 10.4 - Prob. 40ECh. 10.4 - Prob. 41ECh. 10.4 - Prob. 42ECh. 10.4 - Prob. 43ECh. 10.4 - When recording live performances, sound engineers...Ch. 10.4 - Prob. 45ECh. 10.4 - 4548 Find the exact length of the polar curve....Ch. 10.4 - 4548 Find the exact length of the polar curve....Ch. 10.4 - Prob. 48ECh. 10.4 - 4950 Find the exact length of the curve. Use a...Ch. 10.4 - Prob. 50ECh. 10.4 - Prob. 51ECh. 10.4 - Prob. 52ECh. 10.4 - Prob. 53ECh. 10.4 - Prob. 54ECh. 10.4 - a Use Formula 10.2 to show that the area of the...Ch. 10.4 - a Find a formula for the area of the surface...Ch. 10.5 - 18 Find the vertex, focus, and directrix of the...Ch. 10.5 - Prob. 2ECh. 10.5 - Prob. 3ECh. 10.5 - Prob. 4ECh. 10.5 - 18 Find the vertex, focus, and directrix of the...Ch. 10.5 - Prob. 6ECh. 10.5 - Prob. 7ECh. 10.5 - Prob. 8ECh. 10.5 - 910 Find an equation of the parabola. Then find...Ch. 10.5 - 910 Find an equation of the parabola. Then find...Ch. 10.5 - 1116 Find the vertices and foci of the ellipse and...Ch. 10.5 - Prob. 12ECh. 10.5 - Prob. 13ECh. 10.5 - 1116 Find the vertices and foci of the ellipse and...Ch. 10.5 - Prob. 15ECh. 10.5 - Prob. 16ECh. 10.5 - 1718 Find an equation of the ellipse. Then find...Ch. 10.5 - Prob. 18ECh. 10.5 - Prob. 19ECh. 10.5 - Prob. 20ECh. 10.5 - Prob. 21ECh. 10.5 - Prob. 22ECh. 10.5 - Prob. 23ECh. 10.5 - Prob. 24ECh. 10.5 - Prob. 25ECh. 10.5 - 2530 Identify the type of conic section whose...Ch. 10.5 - Prob. 27ECh. 10.5 - Prob. 28ECh. 10.5 - Prob. 29ECh. 10.5 - Prob. 30ECh. 10.5 - Prob. 31ECh. 10.5 - Prob. 32ECh. 10.5 - Prob. 33ECh. 10.5 - 3148 Find an equation for the conic that satisfies...Ch. 10.5 - Prob. 35ECh. 10.5 - Prob. 36ECh. 10.5 - Prob. 37ECh. 10.5 - Prob. 38ECh. 10.5 - Prob. 39ECh. 10.5 - Prob. 40ECh. 10.5 - Prob. 41ECh. 10.5 - Prob. 42ECh. 10.5 - Prob. 43ECh. 10.5 - Prob. 44ECh. 10.5 - Prob. 45ECh. 10.5 - Prob. 46ECh. 10.5 - Prob. 47ECh. 10.5 - Prob. 48ECh. 10.5 - The point in a lunar orbit nearest the surface of...Ch. 10.5 - A cross-section of a parabolic reflector is shown...Ch. 10.5 - The LORAN LOng RAnge Navigation radio navigation...Ch. 10.5 - Use the definition of a hyperbola to derive...Ch. 10.5 - Prob. 53ECh. 10.5 - Prob. 54ECh. 10.5 - Prob. 55ECh. 10.5 - Prob. 56ECh. 10.5 - Prob. 57ECh. 10.5 - Prob. 58ECh. 10.5 - Prob. 59ECh. 10.5 - Prob. 60ECh. 10.5 - Prob. 61ECh. 10.5 - Prob. 62ECh. 10.5 - Prob. 63ECh. 10.5 - a Calculate the surface area of the ellipsoid that...Ch. 10.5 - Let P(x1,y1) be a point on the ellipse...Ch. 10.5 - Let P(x1,y1) be a point on the hyperbola...Ch. 10.6 - Prob. 1ECh. 10.6 - Prob. 2ECh. 10.6 - Prob. 3ECh. 10.6 - Prob. 4ECh. 10.6 - Prob. 5ECh. 10.6 - Prob. 6ECh. 10.6 - Prob. 7ECh. 10.6 - Prob. 8ECh. 10.6 - Prob. 9ECh. 10.6 - Prob. 10ECh. 10.6 - Prob. 11ECh. 10.6 - Prob. 12ECh. 10.6 - Prob. 13ECh. 10.6 - Prob. 14ECh. 10.6 - Prob. 15ECh. 10.6 - Prob. 16ECh. 10.6 - Prob. 17ECh. 10.6 - Prob. 18ECh. 10.6 - Prob. 19ECh. 10.6 - Prob. 20ECh. 10.6 - Prob. 21ECh. 10.6 - Prob. 22ECh. 10.6 - Prob. 23ECh. 10.6 - Prob. 24ECh. 10.6 - Prob. 25ECh. 10.6 - Prob. 26ECh. 10.6 - The orbit of Halleys comet, last seen in 1986 and...Ch. 10.6 - Prob. 28ECh. 10.6 - Prob. 29ECh. 10.6 - Prob. 30ECh. 10.6 - Prob. 31ECh. 10.R - a What is a parametric curve? b How do you sketch...Ch. 10.R - Prob. 2CCCh. 10.R - Prob. 3CCCh. 10.R - Prob. 4CCCh. 10.R - Prob. 5CCCh. 10.R - Prob. 6CCCh. 10.R - Prob. 7CCCh. 10.R - a Give a definition of a hyperbola in terms of...Ch. 10.R - Prob. 9CCCh. 10.R - Prob. 1TFQCh. 10.R - Prob. 2TFQCh. 10.R - Prob. 3TFQCh. 10.R - Prob. 4TFQCh. 10.R - Prob. 5TFQCh. 10.R - Prob. 6TFQCh. 10.R - Prob. 7TFQCh. 10.R - Prob. 8TFQCh. 10.R - Determine whether the statement is true or false....Ch. 10.R - Prob. 10TFQCh. 10.R - Prob. 1ECh. 10.R - Prob. 2ECh. 10.R - Prob. 3ECh. 10.R - Prob. 4ECh. 10.R - Prob. 5ECh. 10.R - Prob. 6ECh. 10.R - Prob. 7ECh. 10.R - Prob. 8ECh. 10.R - Prob. 9ECh. 10.R - Prob. 10ECh. 10.R - Prob. 11ECh. 10.R - Prob. 12ECh. 10.R - Prob. 13ECh. 10.R - Prob. 14ECh. 10.R - Prob. 15ECh. 10.R - Prob. 16ECh. 10.R - Prob. 17ECh. 10.R - Prob. 18ECh. 10.R - Prob. 19ECh. 10.R - Prob. 20ECh. 10.R - Prob. 21ECh. 10.R - Prob. 22ECh. 10.R - Prob. 23ECh. 10.R - Prob. 24ECh. 10.R - Prob. 25ECh. 10.R - Prob. 26ECh. 10.R - Prob. 27ECh. 10.R - Prob. 28ECh. 10.R - At what points does the curve...Ch. 10.R - Prob. 30ECh. 10.R - Find the area enclosed by the curve r2=9cos5.Ch. 10.R - Prob. 32ECh. 10.R - Prob. 33ECh. 10.R - Prob. 34ECh. 10.R - Prob. 35ECh. 10.R - Find the area of the region that lies inside the...Ch. 10.R - 3740 Find the length of the curve. x=3t2,y=2t3,0t2Ch. 10.R - Prob. 38ECh. 10.R - 3740 Find the length of the curve. r=1/,2Ch. 10.R - Prob. 40ECh. 10.R - 4142 Find the area of the surface obtained by...Ch. 10.R - Prob. 42ECh. 10.R - Prob. 43ECh. 10.R - Prob. 44ECh. 10.R - Prob. 45ECh. 10.R - Prob. 46ECh. 10.R - Prob. 47ECh. 10.R - Prob. 48ECh. 10.R - Prob. 49ECh. 10.R - Find an equation of the parabola with focus (2,1)...Ch. 10.R - Prob. 51ECh. 10.R - Prob. 52ECh. 10.R - Prob. 53ECh. 10.R - Prob. 54ECh. 10.R - Prob. 55ECh. 10.R - Prob. 56ECh. 10.R - In the figure the circle of radius a is...Ch. 10.R - A curve called the folium of Descartes is defined...Ch. 10.P - The outer circle in the figure has radius 1 and...Ch. 10.P - a Find the highest and lowest points on the curve...Ch. 10.P - What is the smallest viewing rectangle that...Ch. 10.P - Four bugs are placed at the four corners of a...Ch. 10.P - Show that any tangent line to a hyperbola touches...Ch. 10.P - A circle C of radius 2r has its center at the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Q2: Find the interval and radius of convergence for the following series: Σ n=1 (-1)η-1 xn narrow_forward8. Evaluate arctan x dx a) xartanx 2 2 In(1 + x²) + C b) xartanx + 1½-3ln(1 + x²) + C c) xartanx + In(1 + x²) + C d) (arctanx)² + C 2 9) Evaluate Inx³ dx 3 a) +C b) ln x² + C c)¾½ (lnx)² d) 3x(lnx − 1) + C - x 10) Determine which integral is obtained when the substitution x = So¹² √1 - x²dx sine is made in the integral πT π π a) √ sin cos e de b) √ cos² de c) c Ꮎ Ꮎ cos² 0 de c) cos e de d) for cos² e de πT 11. Evaluate tan³xdx 1 a) b) c) [1 - In 2] 2 2 c) [1 − In2] d)½½[1+ In 2]arrow_forward12. Evaluate ſ √9-x2 -dx. x2 a) C 9-x2 √9-x2 - x2 b) C - x x arcsin ½-½ c) C + √9 - x² + arcsin x d) C + √9-x2 x2 13. Find the indefinite integral S cos³30 √sin 30 dᎾ . 2√√sin 30 (5+sin²30) √sin 30 (3+sin²30) a) C+ √sin 30(5-sin²30) b) C + c) C + 5 5 5 10 d) C + 2√√sin 30 (3-sin²30) 2√√sin 30 (5-sin²30) e) C + 5 15 14. Find the indefinite integral ( sin³ 4xcos 44xdx. a) C+ (7-5cos24x)cos54x b) C (7-5cos24x)cos54x (7-5cos24x)cos54x - 140 c) C - 120 140 d) C+ (7-5cos24x)cos54x e) C (7-5cos24x)cos54x 4 4 15. Find the indefinite integral S 2x2 dx. ex - a) C+ (x²+2x+2)ex b) C (x² + 2x + 2)e-* d) C2(x²+2x+2)e¯* e) C + 2(x² + 2x + 2)e¯* - c) C2x(x²+2x+2)e¯*arrow_forward
- 4. Which substitution would you use to simplify the following integrand? S a) x = sin b) x = 2 tan 0 c) x = 2 sec 3√√3 3 x3 5. After making the substitution x = = tan 0, the definite integral 2 2 3 a) ៖ ស្លឺ sin s π - dᎾ 16 0 cos20 b) 2/4 10 cos 20 π sin30 6 - dᎾ c) Π 1 cos³0 3 · de 16 0 sin20 1 x²√x²+4 3 (4x²+9)2 π d) cos²8 16 0 sin³0 dx d) x = tan 0 dx simplifies to: de 6. In order to evaluate (tan 5xsec7xdx, which would be the most appropriate strategy? a) Separate a sec²x factor b) Separate a tan²x factor c) Separate a tan xsecx factor 7. Evaluate 3x x+4 - dx 1 a) 3x+41nx + 4 + C b) 31n|x + 4 + C c) 3 ln x + 4+ C d) 3x - 12 In|x + 4| + C x+4arrow_forward1. Abel's Theorem. The goal in this problem is to prove Abel's theorem by following a series of steps (each step must be justified). Theorem 0.1 (Abel's Theorem). If y1 and y2 are solutions of the differential equation y" + p(t) y′ + q(t) y = 0, where p and q are continuous on an open interval, then the Wronskian is given by W (¥1, v2)(t) = c exp(− [p(t) dt), where C is a constant that does not depend on t. Moreover, either W (y1, y2)(t) = 0 for every t in I or W (y1, y2)(t) = 0 for every t in I. 1. (a) From the two equations (which follow from the hypotheses), show that y" + p(t) y₁ + q(t) y₁ = 0 and y½ + p(t) y2 + q(t) y2 = 0, 2. (b) Observe that Hence, conclude that (YY2 - Y1 y2) + P(t) (y₁ Y2 - Y1 Y2) = 0. W'(y1, y2)(t) = yY2 - Y1 y2- W' + p(t) W = 0. 3. (c) Use the result from the previous step to complete the proof of the theorem.arrow_forward2. Observations on the Wronskian. Suppose the functions y₁ and y2 are solutions to the differential equation p(x)y" + q(x)y' + r(x) y = 0 on an open interval I. 1. (a) Prove that if y₁ and y2 both vanish at the same point in I, then y₁ and y2 cannot form a fundamental set of solutions. 2. (b) Prove that if y₁ and y2 both attain a maximum or minimum at the same point in I, then y₁ and Y2 cannot form a fundamental set of solutions. 3. (c) show that the functions & and t² are linearly independent on the interval (−1, 1). Verify that both are solutions to the differential equation t² y″ – 2ty' + 2y = 0. Then justify why this does not contradict Abel's theorem. 4. (d) What can you conclude about the possibility that t and t² are solutions to the differential equation y" + q(x) y′ + r(x)y = 0?arrow_forward
- Question 4 Find an equation of (a) The plane through the point (2, 0, 1) and perpendicular to the line x = y=2-t, z=3+4t. 3t, (b) The plane through the point (3, −2, 8) and parallel to the plane z = x+y. (c) The plane that contains the line x = 1+t, y = 2 − t, z = 4 - 3t and is parallel to the plane 5x + 2y + z = 1. (d) The plane that passes through the point (1,2,3) and contains the line x = 3t, y = 1+t, and z = 2-t. (e) The plane that contains the lines L₁: x = 1 + t, y = 1 − t, z = 2t and L2 : x = 2 − s, y = s, z = 2.arrow_forwardPlease find all values of x.arrow_forward3. Consider the initial value problem 9y" +12y' + 4y = 0, y(0) = a>0: y′(0) = −1. Solve the problem and find the value of a such that the solution of the initial value problem is always positive.arrow_forward
- 5. Euler's equation. Determine the values of a for which all solutions of the equation 5 x²y" + axy' + y = 0 that have the form (A + B log x) x* or Ax¹¹ + Bä” tend to zero as a approaches 0.arrow_forward4. Problem on variable change. The purpose of this problem is to perform an appropriate change of variables in order to reduce the problem to a second-order equation with constant coefficients. ty" + (t² − 1)y'′ + t³y = 0, 0arrow_forward4. Some psychologists contend that the number of facts of a certain type that are remembered after t hours is given by f(t)== 90t 951-90 Find the rate at which the number of facts remembered is changing after 1 hour and after 10 hours. Interpret.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
- Algebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning


Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning

College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Finding The Focus and Directrix of a Parabola - Conic Sections; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=KYgmOTLbuqE;License: Standard YouTube License, CC-BY