Mathematical Methods in the Physical Sciences
3rd Edition
ISBN: 9780471198260
Author: Mary L. Boas
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10.5, Problem 16P
Verify that (5.16) gives (5.17). Also verify that (5.18) gives (5.17).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
19. (a) Define the joint distribution and joint distribution function of a bivariate ran-
dom variable.
(b) Define its marginal distributions and marginal distribution functions.
(c) Explain how to compute the marginal distribution functions from the joint
distribution function.
18. Define a bivariate random variable. Provide an
example.
6. (a) Let (, F, P) be a probability space. Explain when a subset of ?? is measurable
and why.
(b) Define a probability measure.
(c) Using the probability axioms, show that if AC B, then P(A) < P(B).
(d) Show that P(AUB) + P(A) + P(B) in general. Write down and prove the
formula for the probability of the union of two sets.
Chapter 10 Solutions
Mathematical Methods in the Physical Sciences
Ch. 10.2 - Verify equations (2.6).Ch. 10.2 - Prob. 2PCh. 10.2 - Consider the matrix A in (2.7) or (2.10). Think of...Ch. 10.2 - Any rotation of axes in three dimensions can be...Ch. 10.2 - Write equations (2.12) out in detail and solve the...Ch. 10.2 - Write the transformation equation for a 3rd-rank...Ch. 10.2 - Following what we did in equations (2.14) to...Ch. 10.2 - Write the equations in (2.16) and so in (2.17)...Ch. 10.3 - Write equations (2.11,), (2.12), (2.13), (2.14),...Ch. 10.3 - Show that the fourth expression in (3.1) is equal...
Ch. 10.3 - As we did in (3.3), show that the contracted...Ch. 10.3 - Show that the contracted tensor TijkVk is a 2nd...Ch. 10.3 - Show that TijklmSlm is a tensor and find its rank...Ch. 10.3 - Show that the sum of two 3rd -rank tensors is a...Ch. 10.3 - As in problem 6, show that the sum of two 2nd...Ch. 10.3 - Show that (3.9) follows from (3.8). Hint: Give a...Ch. 10.3 - Prove the quotient rule in each of the following...Ch. 10.3 - Prove the quotient rule in each of the following...Ch. 10.3 - Prove the quotient rule in each of the following...Ch. 10.3 - Prove the quotient rule in each of the following...Ch. 10.3 - Show that the first parenthesis in (3.5) is a...Ch. 10.4 - As in (4.3) and (4.4), find the y and z components...Ch. 10.4 - Complete Example 4 to verify the rest of the...Ch. 10.4 - As in Problem 2, complete Example 5.Ch. 10.4 - Find the inertia tensor about the origin for a...Ch. 10.4 - For the mass distributions in Problems 5 to 7,...Ch. 10.4 - For the mass distributions in Problems 5 to 7,...Ch. 10.4 - For the mass distributions in Problems 5 to 7,...Ch. 10.4 - For the mass distributions in Problems 5 to 7,...Ch. 10.5 - Verify that (5.5) agrees with a Laplace...Ch. 10.5 - Verify for a few representative cases that (5.6)...Ch. 10.5 - Show that ijklm is an isotropic tensor of rank...Ch. 10.5 - Generalize Problem 3 to see that the direct...Ch. 10.5 - Let Tjkmn be the tensor in (5.8). This is a...Ch. 10.5 - Evaluate: (a) ijjkkmim (b) ijkjk (c) jk2k2j (d)...Ch. 10.5 - Write in terms of s as in (5.8) and (5.9): (a)...Ch. 10.5 - Show that the equations (5.10) are correct. Hints:...Ch. 10.5 - (a) Finish the work of showing that the cross...Ch. 10.5 - (a) Write the triple scalar product A(BC) in...Ch. 10.5 - Using problem 10, write A(BA) in tensor notation...Ch. 10.5 - Write and prove in tensor notation: (a) Chapter 6,...Ch. 10.5 - Write in tensor notation and prove the following...Ch. 10.5 - Show that the diagonal elements of an...Ch. 10.5 - Write a 4-by-4 antisymmetric matrix to show that...Ch. 10.5 - Verify that (5.16) gives (5.17). Also verify that...Ch. 10.5 - Write out the components of Tjk=AjBkAkBj to show...Ch. 10.6 - Show that in 2 dimension (say the x, y plane), an...Ch. 10.6 - In Chapter 3, we said that any 3-by-3 orthogonal...Ch. 10.6 - For Example 1, write out the components of U,V,...Ch. 10.6 - Do Example 1 and Problem 3 if the transformation...Ch. 10.6 - Write the tensor transformation equations for...Ch. 10.6 - Prob. 6PCh. 10.6 - Write the transformation equations for the triple...Ch. 10.6 - Write the transformation equations for WS to...Ch. 10.6 - Prob. 9PCh. 10.6 - Prob. 10PCh. 10.6 - Prob. 11PCh. 10.6 - Prob. 12PCh. 10.6 - Prob. 13PCh. 10.6 - Prob. 14PCh. 10.6 - In equation (5.12), find whether A(BC) is a vector...Ch. 10.6 - In equation (5.14), is (V) a vector or a...Ch. 10.6 - In equation (5.16), show that if Tjk is a tensor...Ch. 10.7 - Verify (7.1).Hints: In Figure 7.1, consider the...Ch. 10.7 - Write out the sums Pijej for each value of i and...Ch. 10.7 - Carry through the details of getting (7.4) from...Ch. 10.7 - Interpret the elements of the matrices in Chapter...Ch. 10.7 - Show by the quotient rule (Section 3) that Cijkm...Ch. 10.7 - If P and S are 2nd-rank tensors, show that 92=81...Ch. 10.7 - In (7.9) we have written the first row of elements...Ch. 10.7 - Do Problem 4.8 in tensor notation and compare the...Ch. 10.8 - Find ds2 in spherical coordinates by the method...Ch. 10.8 - Observe that a simpler way to find the velocity...Ch. 10.8 - Prob. 3PCh. 10.8 - In the text and problems so far, we have found the...Ch. 10.8 - Prob. 5PCh. 10.8 - As in Problem 1, find ds2, the scale factors, the...Ch. 10.8 - As in Problem 1, find ds2, the scale factors, the...Ch. 10.8 - As in Problem 1, find ds2, the scale factors, the...Ch. 10.8 - As in Problem 1, find ds2, the scale factors, the...Ch. 10.8 - Sketch or computer plot the coordinate surfaces in...Ch. 10.8 - Prob. 11PCh. 10.8 - Using the expression you have found for ds, and...Ch. 10.8 - Prob. 13PCh. 10.8 - Using the expression you have found for ds, and...Ch. 10.8 - Let x=u+v,y=v. Find ds, thea vectors, and ds2 for...Ch. 10.9 - Prove (9.4) in the following way. Using (9.2) with...Ch. 10.9 - Prob. 2PCh. 10.9 - Using cylindrical coordinates write the Lagrange...Ch. 10.9 - Prob. 4PCh. 10.9 - Write out U,V,2U, and V in spherical coordinates.Ch. 10.9 - Do Problem 3 for the coordinate systems indicated...Ch. 10.9 - Do Problem 3 for the coordinate systems indicated...Ch. 10.9 - Do Problem 3 for the coordinate systems indicated...Ch. 10.9 - Do Problem 3 for the coordinate systems indicated...Ch. 10.9 - Do Problem 5 for the coordinate systems indicated...Ch. 10.9 - Do Problem 5 for the coordinate systems indicated...Ch. 10.9 - Do Problem 5 for the coordinate systems indicated...Ch. 10.9 - Do Problem 5 for the coordinate systems indicated...Ch. 10.9 - Prob. 14PCh. 10.9 - Prob. 15PCh. 10.9 - Use equations (9.2), (9.8), and (9.11) to evaluate...Ch. 10.9 - Use equations (9.2), (9.8), and (9.11) to evaluate...Ch. 10.9 - Use equations (9.2), (9.8), and (9.18) to evaluate...Ch. 10.9 - Use equations (9.2), (9.8) and (9.11) to evaluate...Ch. 10.9 - Use equations (9.2), (9.8), and (9.11) to evaluate...Ch. 10.9 - Use equations (9.2), (9.8), and (9.11) to evaluate...Ch. 10.10 - Verify equation (10.7). Hint: Use equations (2.4)...Ch. 10.10 - From (10.1) find /x=(1/r)coscos and show that...Ch. 10.10 - Divide equation (10.4) by dt to show that the...Ch. 10.10 - Prob. 4PCh. 10.10 - Write u in polar coordinates in terms of its...Ch. 10.10 - Prob. 6PCh. 10.10 - As in (10.12), write the transformation equations...Ch. 10.10 - Using (10.15) show that gij is a 2nd-rank...Ch. 10.10 - If Ui is a contravariant vector and Vj is a...Ch. 10.10 - Show that if Vi is a contravariant vector then...Ch. 10.10 - In (10.18), show by raising and lowering indices...Ch. 10.10 - Show that in a general coordinate system with...Ch. 10.10 - Verify (10.20).Ch. 10.10 - Using equations (10.20) to (10.23), write the...Ch. 10.10 - Do Problem 14 for an orthogonal coordinate system...Ch. 10.10 - Continue Problem 8.15 to find the gij matrix and...Ch. 10.10 - Repeat Problems 8.15 and 10.16 above for the (u,v)...Ch. 10.10 - Using (10.19), show that aiai=ji.Ch. 10.11 - Show that the transformation equation for a...Ch. 10.11 - Let e1,e2,e3 be a set of orthogonal unit vectors...Ch. 10.11 - In Chapter 3, Problem 6.6, you are asked to prove...Ch. 10.11 - If E= electric field and B= magnetic field, is EB...Ch. 10.11 - Do Problems 5 to 8 for the (u,v) coordinate system...Ch. 10.11 - Do Problems 5 to 8 for the (u,v) coordinate system...Ch. 10.11 - Do Problems 5 to 8 for the (u,v) coordinate system...Ch. 10.11 - Do Problems 5 to 8 for the (u,v) coordinate system...Ch. 10.11 - If u is a vector specifying the displacement under...Ch. 10.11 - Show that elements Rij of a rotation matrix are...Ch. 10.11 - Show that the nine quantities Tij=Vi/xj (which are...Ch. 10.11 - The square matrix in equation (10.3) is called the...Ch. 10.11 - In equation (10.13) let the x variables be...
Additional Math Textbook Solutions
Find more solutions based on key concepts
A categorical variable has three categories, with the following frequencies of occurrence: a. Compute the perce...
Basic Business Statistics, Student Value Edition
In Exercises 5-36, express all probabilities as fractions.
23. Combination Lock The typical combination lock us...
Elementary Statistics
In Hamilton County, Ohio, the mean number of days needed to sell a house is 86 days (Cincinnati Multiple Listin...
STATISTICS F/BUSINESS+ECONOMICS-TEXT
Logarithmic differentiation Use logarithmic differentiation to evaluate f(x). 61. f(x)=(x+1)10(2x4)8
Calculus: Early Transcendentals (2nd Edition)
Hypothesis Testing Using a P-Value In Exercises 31–36,
identify the claim and state H0 and Ha.
find the standar...
Elementary Statistics: Picturing the World (7th Edition)
CHECK POINT I You deposit $1000 in a saving account at a bank that has a rate of 4%. a. Find the amount, A, of ...
Thinking Mathematically (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 21. Prove that: {(a, b), - sa≤barrow_forward10. (a) Define the independence of sets A, B, C. (b) Provide an example where A, B, C are pairwise independent but not mutually independent. (c) Give an example where P(AnBnC) = P(A)P(B)P(C), but the sets are not pairwise independent.arrow_forward23. State Bayes' formula. Jaching R. Machine.arrow_forward(d) Show that A, and A' are tail events.arrow_forward11. (a) Define the (mathematical and conceptual) definition of conditional probability P(A|B). (b) Explain the product law in conditional probability. (c) Explain the relation between independence and the conditional probability of two sets.arrow_forward12. (a) Explain tail events and the tail o-field. Give an example. (b) State (without proof) the Kolmogorov zero-one law.arrow_forward24. A factory produces items from two machines: Machine A and Machine B. Machine A produces 60% of the total items, while Machine B produces 40%. The probability that an item produced by Machine A is defective is P(D|A)=0.03. The probability that an item produced by Machine B is defective is P(D|B) = 0.05. (a) What is the probability that a randomly selected product be defective, P(D)? (b) If a randomly selected item from the production line is defective, calculate the probability that it was produced by Machine A, P(A|D).arrow_forward13. Let (, F, P) be a probability space and X a function from 2 to R. Explain when X is a random variable.arrow_forward(b) Prove that if ACBC (A), then (A)=(B).arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
What is a Linear Equation in One Variable?; Author: Don't Memorise;https://www.youtube.com/watch?v=lDOYdBgtnjY;License: Standard YouTube License, CC-BY
Linear Equation | Solving Linear Equations | What is Linear Equation in one variable ?; Author: Najam Academy;https://www.youtube.com/watch?v=tHm3X_Ta_iE;License: Standard YouTube License, CC-BY