EBK SINGLE VARIABLE CALCULUS: EARLY TRA
8th Edition
ISBN: 9780176743826
Author: Stewart
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10.4, Problem 44E
When recording live performances, sound engineers often use a microphone with a cardioid pickup pattern because it suppresses noise from the audience. Suppose the microphone is placed 4 m from the front of the stage (as in the figure) and the boundary of the optimal pickup region is given by the cardioid r = 8 + 8 sin θ, where r is measured in meters and the microphone is at the pole. The musicians want to know the area they will have on stage within the optimal pickup range of the microphone. Answer their question.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How to solve it explain it step by step please
2.3 Vibration amplitude of a machine plotted against time shown in Fig. T2.3. is described by
sin(0.8+) In(t + 2)
x(t) =
t + 0.5
Here, t is in seconds and x is in millimeters
0.6
0.4
0.2
°
-0.2
mmm
-0.4
0
10
20
30
40
50
60
70
Time [s]
Fig. T2.3: Machine vibration amplitude variation against time
Obtain the vibration velocity as a function of time, x(t), if it is measured by a vibration velocity sensor.
Example(1):
(Adiabatic humidification and cooling of
air). Air has to be humidified and cooled
adiabatically in a honzontal spray chamber
with recirculated water. The active part of
the chamber is Im #2m #15 m long. Under
the operating conditions, the coefficient
of heat transfer is expected to be 1300
kcal/(hr)(m2)(°C). 200 m3/min of air at 60
°C and 1 atm pressure with a humidity of
0.018 kg water/kg dry air is to be blown
through the spray chamber. Calculate the
following
(a) the temperature and hunudity of the
exit air
(b) make-up water to be supplied, windage
and blow down are neglected
(c) the expected gas-phase mass transfer
coefficient, kya
(d) the temperature and humidity of the
exit air if an identical spray chamber is
added in series with
the existing one
O
Chapter 10 Solutions
EBK SINGLE VARIABLE CALCULUS: EARLY TRA
Ch. 10.1 - Sketch the curve by using the parametric equations...Ch. 10.1 - Prob. 2ECh. 10.1 - Prob. 3ECh. 10.1 - Prob. 4ECh. 10.1 - Prob. 5ECh. 10.1 - Prob. 6ECh. 10.1 - Prob. 7ECh. 10.1 - Prob. 8ECh. 10.1 - Prob. 9ECh. 10.1 - Prob. 10E
Ch. 10.1 - Prob. 11ECh. 10.1 - Prob. 12ECh. 10.1 - Prob. 13ECh. 10.1 - Prob. 14ECh. 10.1 - (a) Eliminate the parameter to find a Cartesian...Ch. 10.1 - Prob. 16ECh. 10.1 - Prob. 17ECh. 10.1 - Prob. 18ECh. 10.1 - Prob. 19ECh. 10.1 - Prob. 20ECh. 10.1 - Prob. 21ECh. 10.1 - Prob. 22ECh. 10.1 - Prob. 23ECh. 10.1 - Prob. 24ECh. 10.1 - Prob. 25ECh. 10.1 - Prob. 26ECh. 10.1 - Prob. 27ECh. 10.1 - Match the parametric equations with the graphs...Ch. 10.1 - Prob. 29ECh. 10.1 - Prob. 30ECh. 10.1 - Prob. 31ECh. 10.1 - Prob. 32ECh. 10.1 - Find parametric equations for the path of a...Ch. 10.1 - Prob. 34ECh. 10.1 - Prob. 35ECh. 10.1 - Prob. 36ECh. 10.1 - Prob. 37ECh. 10.1 - Prob. 38ECh. 10.1 - Prob. 39ECh. 10.1 - Prob. 40ECh. 10.1 - Prob. 41ECh. 10.1 - Prob. 42ECh. 10.1 - Prob. 43ECh. 10.1 - Prob. 44ECh. 10.1 - Suppose that the position of one particle at time...Ch. 10.1 - Prob. 46ECh. 10.1 - Prob. 47ECh. 10.1 - Prob. 48ECh. 10.1 - Prob. 49ECh. 10.1 - Prob. 50ECh. 10.1 - Prob. 51ECh. 10.1 - Prob. 52ECh. 10.2 - Find dy/dx. 1. x=t1+t,y=1+tCh. 10.2 - Prob. 2ECh. 10.2 - Prob. 3ECh. 10.2 - Prob. 4ECh. 10.2 - Find an equation of the tangent to the curve at...Ch. 10.2 - Find an equation of the tangent to the curve at...Ch. 10.2 - Prob. 7ECh. 10.2 - Prob. 8ECh. 10.2 - Prob. 9ECh. 10.2 - Find an equation of the tangent to the curve at...Ch. 10.2 - Prob. 11ECh. 10.2 - Prob. 12ECh. 10.2 - Prob. 13ECh. 10.2 - Prob. 14ECh. 10.2 - Find dy/dx and d2y/dx2. For which values of t is...Ch. 10.2 - Prob. 16ECh. 10.2 - Prob. 17ECh. 10.2 - Prob. 18ECh. 10.2 - Prob. 19ECh. 10.2 - Find the points on the curve where the tangent is...Ch. 10.2 - Prob. 21ECh. 10.2 - Prob. 22ECh. 10.2 - Prob. 23ECh. 10.2 - Prob. 24ECh. 10.2 - Show that the curve x = cos t, y = sin t cos t has...Ch. 10.2 - Prob. 26ECh. 10.2 - (a) Find the slope of the tangent line to the...Ch. 10.2 - Prob. 28ECh. 10.2 - Prob. 29ECh. 10.2 - Prob. 30ECh. 10.2 - Use the parametric equations of an ellipse, x = a...Ch. 10.2 - Prob. 32ECh. 10.2 - Find the area enclosed by the x-axis and the curve...Ch. 10.2 - Prob. 34ECh. 10.2 - Prob. 35ECh. 10.2 - Let R be the region enclosed by the loop of the...Ch. 10.2 - Prob. 37ECh. 10.2 - Prob. 38ECh. 10.2 - Prob. 39ECh. 10.2 - Prob. 40ECh. 10.2 - Prob. 41ECh. 10.2 - Prob. 42ECh. 10.2 - Prob. 43ECh. 10.2 - Prob. 44ECh. 10.2 - Prob. 45ECh. 10.2 - Prob. 46ECh. 10.2 - Prob. 47ECh. 10.2 - Prob. 48ECh. 10.2 - Prob. 49ECh. 10.2 - Prob. 50ECh. 10.2 - Prob. 51ECh. 10.2 - Prob. 52ECh. 10.2 - Prob. 53ECh. 10.2 - Prob. 54ECh. 10.2 - (a) Graph the epitrochoid with equations...Ch. 10.2 - Prob. 57ECh. 10.2 - Prob. 58ECh. 10.2 - Prob. 59ECh. 10.2 - Prob. 60ECh. 10.2 - Prob. 61ECh. 10.2 - Find the exact area of the surface obtained by...Ch. 10.2 - Prob. 63ECh. 10.2 - Prob. 64ECh. 10.2 - Prob. 65ECh. 10.2 - Prob. 66ECh. 10.2 - Prob. 67ECh. 10.2 - Prob. 68ECh. 10.2 - Prob. 69ECh. 10.2 - Prob. 70ECh. 10.2 - Prob. 71ECh. 10.2 - Prob. 72ECh. 10.2 - Prob. 73ECh. 10.2 - Prob. 74ECh. 10.3 - Prob. 1ECh. 10.3 - Prob. 2ECh. 10.3 - Plot the point whose polar coordinates are given....Ch. 10.3 - Prob. 4ECh. 10.3 - Prob. 5ECh. 10.3 - Prob. 6ECh. 10.3 - Prob. 7ECh. 10.3 - Prob. 8ECh. 10.3 - Prob. 9ECh. 10.3 - Prob. 10ECh. 10.3 - Prob. 11ECh. 10.3 - Prob. 12ECh. 10.3 - Prob. 13ECh. 10.3 - Prob. 14ECh. 10.3 - Prob. 15ECh. 10.3 - Prob. 16ECh. 10.3 - Identify the curve by finding a Cartesian equation...Ch. 10.3 - Prob. 18ECh. 10.3 - Prob. 19ECh. 10.3 - Prob. 20ECh. 10.3 - Prob. 21ECh. 10.3 - Prob. 22ECh. 10.3 - Prob. 23ECh. 10.3 - Prob. 24ECh. 10.3 - Prob. 25ECh. 10.3 - Prob. 26ECh. 10.3 - Prob. 27ECh. 10.3 - Prob. 28ECh. 10.3 - Prob. 29ECh. 10.3 - Sketch the curve with the given polar equation by...Ch. 10.3 - Prob. 31ECh. 10.3 - Prob. 32ECh. 10.3 - Prob. 33ECh. 10.3 - Prob. 34ECh. 10.3 - Prob. 35ECh. 10.3 - Prob. 36ECh. 10.3 - Prob. 37ECh. 10.3 - Prob. 38ECh. 10.3 - Prob. 39ECh. 10.3 - Prob. 40ECh. 10.3 - Sketch the curve with the given polar equation by...Ch. 10.3 - Prob. 42ECh. 10.3 - Prob. 43ECh. 10.3 - Sketch the curve with the given polar equation by...Ch. 10.3 - Prob. 45ECh. 10.3 - Prob. 46ECh. 10.3 - Prob. 47ECh. 10.3 - Prob. 48ECh. 10.3 - Prob. 49ECh. 10.3 - Prob. 50ECh. 10.3 - Prob. 51ECh. 10.3 - Prob. 52ECh. 10.3 - (a) In Example 11 the graphs suggest that the...Ch. 10.3 - Prob. 54ECh. 10.3 - Prob. 55ECh. 10.3 - Find the slope of the tangent line to the given...Ch. 10.3 - Prob. 57ECh. 10.3 - Prob. 58ECh. 10.3 - Prob. 59ECh. 10.3 - Prob. 60ECh. 10.3 - Prob. 61ECh. 10.3 - Find the points on the given curve where the...Ch. 10.3 - Prob. 63ECh. 10.3 - Prob. 64ECh. 10.3 - Prob. 65ECh. 10.3 - Prob. 66ECh. 10.3 - Use a graphing device to graph the polar curve....Ch. 10.3 - Prob. 68ECh. 10.3 - Prob. 69ECh. 10.3 - Use a graphing device to graph the polar curve....Ch. 10.3 - Use a graphing device to graph the polar curve....Ch. 10.3 - Prob. 72ECh. 10.3 - Prob. 73ECh. 10.3 - Prob. 74ECh. 10.3 - Prob. 75ECh. 10.3 - Prob. 76ECh. 10.3 - Prob. 77ECh. 10.3 - Prob. 78ECh. 10.4 - Find the area of the region that is bounded by the...Ch. 10.4 - Find the area of the region that is bounded by the...Ch. 10.4 - Find the area of the region that is bounded by the...Ch. 10.4 - Prob. 4ECh. 10.4 - Find the area of the shaded region. 5.Ch. 10.4 - Prob. 6ECh. 10.4 - Prob. 7ECh. 10.4 - Prob. 8ECh. 10.4 - Prob. 9ECh. 10.4 - Prob. 10ECh. 10.4 - Prob. 11ECh. 10.4 - Prob. 12ECh. 10.4 - Prob. 13ECh. 10.4 - Prob. 14ECh. 10.4 - Prob. 15ECh. 10.4 - Graph the curve and find the area that it...Ch. 10.4 - Find the area of the region enclosed by one loop...Ch. 10.4 - Prob. 18ECh. 10.4 - Prob. 19ECh. 10.4 - Prob. 20ECh. 10.4 - Prob. 21ECh. 10.4 - Find the area enclosed by the loop of the...Ch. 10.4 - Find the area of the region that lies inside the...Ch. 10.4 - Prob. 24ECh. 10.4 - Prob. 25ECh. 10.4 - Prob. 26ECh. 10.4 - Prob. 27ECh. 10.4 - Prob. 28ECh. 10.4 - Find the area of the region that lies inside both...Ch. 10.4 - Prob. 30ECh. 10.4 - Prob. 31ECh. 10.4 - Prob. 32ECh. 10.4 - Find the area of the region that lies inside both...Ch. 10.4 - Prob. 34ECh. 10.4 - Find the area inside the larger loop and outside...Ch. 10.4 - Find the area between a large loop and the...Ch. 10.4 - Find all points of intersection of the given...Ch. 10.4 - Prob. 38ECh. 10.4 - Prob. 39ECh. 10.4 - Find all points of intersection of the given...Ch. 10.4 - Prob. 41ECh. 10.4 - Prob. 42ECh. 10.4 - The points of intersection of the cardioid r = 1 +...Ch. 10.4 - When recording live performances, sound engineers...Ch. 10.4 - Prob. 45ECh. 10.4 - Find the exact length of the polar curve. 46. r =...Ch. 10.4 - Prob. 47ECh. 10.4 - Prob. 48ECh. 10.4 - Prob. 49ECh. 10.4 - Prob. 50ECh. 10.4 - Prob. 51ECh. 10.4 - Prob. 52ECh. 10.4 - Prob. 53ECh. 10.4 - Prob. 54ECh. 10.4 - Prob. 55ECh. 10.4 - (a) Find a formula for the area of the surface...Ch. 10.5 - Prob. 1ECh. 10.5 - Prob. 2ECh. 10.5 - Prob. 3ECh. 10.5 - Prob. 4ECh. 10.5 - Prob. 5ECh. 10.5 - Prob. 6ECh. 10.5 - Find the vertex, focus, and directrix of the...Ch. 10.5 - Find the vertex, focus, and directrix of the...Ch. 10.5 - Prob. 9ECh. 10.5 - Prob. 10ECh. 10.5 - Prob. 11ECh. 10.5 - Prob. 12ECh. 10.5 - Prob. 13ECh. 10.5 - Prob. 14ECh. 10.5 - Prob. 15ECh. 10.5 - Prob. 16ECh. 10.5 - Prob. 17ECh. 10.5 - Prob. 18ECh. 10.5 - Prob. 19ECh. 10.5 - Prob. 20ECh. 10.5 - Prob. 21ECh. 10.5 - Prob. 22ECh. 10.5 - Prob. 23ECh. 10.5 - Prob. 24ECh. 10.5 - Prob. 25ECh. 10.5 - Prob. 26ECh. 10.5 - Prob. 27ECh. 10.5 - Prob. 28ECh. 10.5 - Prob. 29ECh. 10.5 - Prob. 30ECh. 10.5 - Prob. 31ECh. 10.5 - Prob. 32ECh. 10.5 - Prob. 33ECh. 10.5 - Prob. 34ECh. 10.5 - Prob. 35ECh. 10.5 - Prob. 36ECh. 10.5 - Prob. 37ECh. 10.5 - Prob. 38ECh. 10.5 - Prob. 39ECh. 10.5 - Prob. 40ECh. 10.5 - Prob. 41ECh. 10.5 - Prob. 42ECh. 10.5 - Prob. 43ECh. 10.5 - Prob. 44ECh. 10.5 - Prob. 45ECh. 10.5 - Prob. 46ECh. 10.5 - Prob. 47ECh. 10.5 - Prob. 48ECh. 10.5 - Prob. 49ECh. 10.5 - A cross-section of a parabolic reflector is shown...Ch. 10.5 - Prob. 51ECh. 10.5 - Prob. 52ECh. 10.5 - Prob. 53ECh. 10.5 - Prob. 54ECh. 10.5 - Prob. 55ECh. 10.5 - Prob. 56ECh. 10.5 - Prob. 57ECh. 10.5 - Prob. 58ECh. 10.5 - Prob. 59ECh. 10.5 - Prob. 60ECh. 10.5 - Find the area of the region enclosed by the...Ch. 10.5 - Prob. 62ECh. 10.5 - Prob. 63ECh. 10.5 - Prob. 64ECh. 10.5 - Prob. 65ECh. 10.5 - Prob. 66ECh. 10.6 - Prob. 1ECh. 10.6 - Prob. 2ECh. 10.6 - Prob. 3ECh. 10.6 - Prob. 4ECh. 10.6 - Prob. 5ECh. 10.6 - Prob. 6ECh. 10.6 - Prob. 7ECh. 10.6 - Prob. 8ECh. 10.6 - Prob. 9ECh. 10.6 - Prob. 10ECh. 10.6 - Prob. 11ECh. 10.6 - Prob. 12ECh. 10.6 - Prob. 13ECh. 10.6 - Prob. 14ECh. 10.6 - Prob. 15ECh. 10.6 - Prob. 16ECh. 10.6 - Prob. 17ECh. 10.6 - Prob. 18ECh. 10.6 - Prob. 19ECh. 10.6 - Prob. 20ECh. 10.6 - Prob. 21ECh. 10.6 - Prob. 22ECh. 10.6 - Prob. 23ECh. 10.6 - Prob. 24ECh. 10.6 - Prob. 25ECh. 10.6 - Prob. 26ECh. 10.6 - Prob. 27ECh. 10.6 - Prob. 28ECh. 10.6 - Prob. 29ECh. 10.6 - Prob. 30ECh. 10.6 - Prob. 31ECh. 10 - Prob. 1RCCCh. 10 - Prob. 2RCCCh. 10 - Prob. 3RCCCh. 10 - Prob. 4RCCCh. 10 - Prob. 5RCCCh. 10 - Prob. 6RCCCh. 10 - Prob. 7RCCCh. 10 - Prob. 8RCCCh. 10 - Prob. 9RCCCh. 10 - Prob. 1RQCh. 10 - Prob. 2RQCh. 10 - Prob. 3RQCh. 10 - Prob. 4RQCh. 10 - Prob. 5RQCh. 10 - Prob. 6RQCh. 10 - Prob. 7RQCh. 10 - Prob. 8RQCh. 10 - Prob. 9RQCh. 10 - Prob. 10RQCh. 10 - Prob. 1RECh. 10 - Prob. 2RECh. 10 - Prob. 3RECh. 10 - Prob. 4RECh. 10 - Prob. 5RECh. 10 - Prob. 6RECh. 10 - Prob. 7RECh. 10 - Prob. 8RECh. 10 - Prob. 9RECh. 10 - Prob. 10RECh. 10 - Prob. 11RECh. 10 - Prob. 12RECh. 10 - Prob. 13RECh. 10 - Sketch the polar curve. 14. r = 2 cos(/2)Ch. 10 - Prob. 15RECh. 10 - Prob. 16RECh. 10 - Prob. 17RECh. 10 - Prob. 18RECh. 10 - Prob. 19RECh. 10 - Prob. 20RECh. 10 - Prob. 21RECh. 10 - Prob. 22RECh. 10 - Prob. 23RECh. 10 - Prob. 24RECh. 10 - Prob. 25RECh. 10 - Prob. 26RECh. 10 - Prob. 27RECh. 10 - Prob. 28RECh. 10 - Prob. 29RECh. 10 - Prob. 30RECh. 10 - Find the area enclosed by the curve r2 = 9 cos 5.Ch. 10 - Prob. 32RECh. 10 - Prob. 33RECh. 10 - Prob. 34RECh. 10 - Prob. 35RECh. 10 - Prob. 36RECh. 10 - Prob. 37RECh. 10 - Prob. 38RECh. 10 - Prob. 39RECh. 10 - Find the length of the curve. 40. r = sin3(/3), 0Ch. 10 - Prob. 41RECh. 10 - Prob. 42RECh. 10 - Prob. 43RECh. 10 - Prob. 44RECh. 10 - Prob. 45RECh. 10 - Prob. 46RECh. 10 - Prob. 47RECh. 10 - Prob. 48RECh. 10 - Prob. 49RECh. 10 - Prob. 50RECh. 10 - Prob. 51RECh. 10 - Prob. 52RECh. 10 - Find an equation for the ellipse that shares a...Ch. 10 - Prob. 54RECh. 10 - Prob. 55RECh. 10 - Prob. 56RECh. 10 - Prob. 57RECh. 10 - A curve called the folium of Descartes is defined...Ch. 10 - Prob. 1PCh. 10 - (a) Find the highest and lowest points on the...Ch. 10 - Prob. 3PCh. 10 - Four bugs are placed at the four comers of a...Ch. 10 - Prob. 5PCh. 10 - A circle C of radius 2r has its center at the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- find a simple formula fot the nth term of the following sequences 1, -2, 3, -4, 5, -6, ...arrow_forwardCalculate the first five terms of the following sequence cn = n+(n+1)+(n+2)+···+(2n)arrow_forward= x³, y = 8, x = 0. Let R be the region bounded by the curves y = x³ 1. Sketch the region and find the area. Write your answer in simplest fractional form. 2. Sketch the solid you obtain by rotating the region R about the x-axis. 3. Find the volume of the solid obtained by rotating the region R about the x-axis using the disk/washer method. Write the formula you are using. Write your answer in terms of π. Draw the approximating rectangle that you rotate. 4. Find the volume of the solid obtained by rotating the region R about the x-axis using the shell method. Write the formula you are using. Write your answer in terms of π. Draw the approximating rectangle that you rotate. 5. Which method did you find easier and why? [There is no wrong answer for what you find easier, but explain.] 6. Sketch the solid you obtain by rotating the region R about the y-axis. 7. Find the volume of the solid obtained by rotating the region R about the y-axis using the disk/washer method. Write the formula…arrow_forward
- #7 Using implicit differentiation, find the equation of the tangent line to the given curve at the given point: a) 3x2y2-3y-17=5x+14 at (1,-3) b) y2-7xy+x-2x=9 at (0,3)arrow_forwardSimpson’s Rule with n = 4 subintervals to estimate the integral of the squre root of x dx with upper bounds of 9 and lower bounds of 1 is 14.2302 but exactly 18. Use the Error Bound to find the bound for the error.arrow_forwardSimpson’s Rule with n = 4 subintervals to estimate the integral of the squre root of x dx with upper bounds of 9 and lower bounds of 1 is 14.2302. Use the error made using this estimatearrow_forward
- the integral of the squre root of x dx with upper bounds of 9 and lower bounds of 1 is 14.2302 but exactly 18. Use the Error Bound to find the bound for the error.arrow_forwardSimpson’s Rule with n = 4 subintervals to estimate the integral of the squre root of x dx with upper bounds of 9 nd lower bounds of 1 is 14.2302 but exactly 18.arrow_forwardSimpson’s Rule with n = 4 subintervals to estimate the integral of the square root of x dx upper bound of 9 and lower bound of 1 is 14.2302 but exactly 18.arrow_forward
- The integral of x2 dx with upper bounds of 2 and lower bounds of 0 is 8/3. The error bound is <4/3.arrow_forwardThe integral of x2 dx with upper bounds of 2 and lower bounds of 0 is 8/3. Use the Error Bound to find the bound for the error.arrow_forwardUse the Error Bound Formula for the trapezoid Rule to determine N so that if the integreal of e-2x dx with upper bound of 10 and ler bound of 0 is approximated using the Trapzoid Rule with N subintervals, the error is guaranteed to be less that 10-4arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY