CHEM:ATOM FIRST V.1 W/ACCESS >C
17th Edition
ISBN: 9781307132731
Author: Burdge
Publisher: MCG/CREATE
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10.4, Problem 10.5WE
A metal pellet with a mass of 100.0 g. originally at 88.4°C, is dropped into 125 g of water originally at 25.1°C. The final temperature of both the pellet and the water is 31.3°C. Calculate the heat capacity C (in J/°C) of the pellet.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
CHEM:ATOM FIRST V.1 W/ACCESS >C
Ch. 10.1 - Calculate the number of calories in 723.01 J. (a)...Ch. 10.1 - The label on packaged food indicates that it...Ch. 10.1 - From the figure shown here, which of the following...Ch. 10.2 - Calculate the overall change in internal energy,...Ch. 10.2 - Calculate the change in total internal energy for...Ch. 10.2 - Calculate the magnitude of q for a system that...Ch. 10.2 - The diagram on the left shows a system before a...Ch. 10.2 - Prob. 10.2.1SRCh. 10.2 - Calculate w, and determine whether work is done by...Ch. 10.3 - Determine the work done (in joules) when a sample...
Ch. 10.3 - Calculate the work done by or on the system during...Ch. 10.3 - (a) Against what external pressure must a gas...Ch. 10.3 - The diagram on the left shows a sample of gas...Ch. 10.3 - Given the thermochemical equation for...Ch. 10.3 - Calculate the solar energy required to produce...Ch. 10.3 - Prob. 3PPBCh. 10.3 - The diagrams represent systems before and after...Ch. 10.3 - Given the thermochemical equation,...Ch. 10.3 - Given the thermochemical equation,...Ch. 10.4 - Prob. 10.4WECh. 10.4 - Prob. 4PPACh. 10.4 - Prob. 4PPBCh. 10.4 - A metal pellet with a mass of 100.0 g. originally...Ch. 10.4 - What would the final temperature be if the pellet...Ch. 10.4 - Prob. 5PPBCh. 10.4 - Prob. 5PPCCh. 10.4 - A Famous Amos bite-sized chocolate chip cookie...Ch. 10.4 - A serving of Grape-Nuts cereal (5.80 g) is burned...Ch. 10.4 - Prob. 6PPBCh. 10.4 - Suppose an experiment to determine the energy...Ch. 10.4 - Prob. 10.4.1SRCh. 10.4 - Prob. 10.4.2SRCh. 10.4 - Prob. 10.4.3SRCh. 10.4 - Quantities of 50.0 mL of 1.00 M HCl and 50.0 mL of...Ch. 10.5 - Given the following thermochemical equations....Ch. 10.5 - Use the thermochemical equations provided in...Ch. 10.5 - Prob. 10.5.1SRCh. 10.5 - Prob. 10.5.2SRCh. 10.6 - Prob. 10.8WECh. 10.6 - Using data from Appendix 2, calculate Hrn for...Ch. 10.6 - Using data from Appendix 2, calculate Hrn for...Ch. 10.6 - The diagrams represent a system before and after a...Ch. 10.6 - Given the following information, calculate the...Ch. 10.6 - Use the following data to calculate Hf for...Ch. 10.6 - Prob. 9PPBCh. 10.6 - The diagrams represent a system before and after a...Ch. 10.6 - Prob. 10.6.1SRCh. 10.6 - Prob. 10.6.2SRCh. 10.6 - Prob. 10.6.3SRCh. 10.7 - Use bond enthalpies from Table 10.4 to estimate...Ch. 10.7 - Use bond enthalpies from fable 10.4 to estimate...Ch. 10.7 - Prob. 10PPBCh. 10.7 - Prob. 10PPCCh. 10.7 - Prob. 10.7.1SRCh. 10.7 - Prob. 10.7.2SRCh. 10.7 - Prob. 10.7.3SRCh. 10.7 - Prob. 10.7.4SRCh. 10.8 - Prob. 10.11WECh. 10.8 - Prob. 11PPACh. 10.8 - The lattice energy of MgO is 3890 kJ/mol, and the...Ch. 10.8 - Prob. 11PPCCh. 10.8 - Prob. 10.8.1SRCh. 10.8 - Prob. 10.8.2SRCh. 10 - Using data from Appendix 2, calculate the standard...Ch. 10 - Using data from Appendix 2, calculate the standard...Ch. 10 - Prob. 10.3KSPCh. 10 - Prob. 10.4KSPCh. 10 - Define these terms: system, surroundings, thermal...Ch. 10 - What is heat? How does heat differ from thermal...Ch. 10 - Prob. 10.3QPCh. 10 - Define these terms: thermochemistry, exothermic...Ch. 10 - Prob. 10.5QPCh. 10 - Describe two exothermic processes and two...Ch. 10 - Decomposition reactions are usually endothermic,...Ch. 10 - On what law is the first law of thermodynamics...Ch. 10 - Explain what is meant by a state function. Give...Ch. 10 - In a gas expansion, 36 J of heat is absorbed from...Ch. 10 - Prob. 10.11QPCh. 10 - Prob. 10.12QPCh. 10 - Calculate w, and determine whether work is done by...Ch. 10 - Prob. 10.14QPCh. 10 - Prob. 10.15QPCh. 10 - Prob. 10.16QPCh. 10 - Define these terms: enthalpy and enthalpy of...Ch. 10 - Prob. 10.18QPCh. 10 - Prob. 10.19QPCh. 10 - Prob. 10.20QPCh. 10 - Prob. 10.21QPCh. 10 - A gas expands and does PV work on the surroundings...Ch. 10 - Prob. 10.23QPCh. 10 - Prob. 10.24QPCh. 10 - Consider the reaction at a certain temperature. If...Ch. 10 - Prob. 10.26QPCh. 10 - Prob. 10.27QPCh. 10 - Prob. 10.28QPCh. 10 - Prob. 10.1VCCh. 10 - Prob. 10.2VCCh. 10 - Prob. 10.3VCCh. 10 - Prob. 10.4VCCh. 10 - Prob. 10.5VCCh. 10 - Prob. 10.6VCCh. 10 - Prob. 10.7VCCh. 10 - Referring to the process depicted in Figure 10.10,...Ch. 10 - What is the difference between specific heat and...Ch. 10 - Define calorimetry and describe two commonly used...Ch. 10 - A 2.21-kg piece of copper metal is heated from...Ch. 10 - Prob. 10.32QPCh. 10 - A sheet of gold weighing 10.0 g and at a...Ch. 10 - Prob. 10.34QPCh. 10 - A quantity of 2.00 102 mL of 0.862 M HC1 is mixed...Ch. 10 - Prob. 10.36QPCh. 10 - Prob. 10.37QPCh. 10 - Prob. 10.38QPCh. 10 - A 25.95-g sample of methanol at 35.6C is added to...Ch. 10 - Prob. 10.40QPCh. 10 - Prob. 10.41QPCh. 10 - Prob. 10.42QPCh. 10 - Prob. 10.43QPCh. 10 - Prob. 10.44QPCh. 10 - Prob. 10.45QPCh. 10 - Prob. 10.46QPCh. 10 - Prob. 10.47QPCh. 10 - Prob. 10.48QPCh. 10 - Prob. 10.49QPCh. 10 - Prob. 10.50QPCh. 10 - What is meant by the standard-state condition?Ch. 10 - How are the standard enthalpies of an element and...Ch. 10 - What is meant by the standard enthalpy of a...Ch. 10 - Write the equation for calculating the enthalpy of...Ch. 10 - Prob. 10.55QPCh. 10 - Prob. 10.56QPCh. 10 - Prob. 10.57QPCh. 10 - Calculate the heats of combustion for the...Ch. 10 - Calculate the heats of combustion for the...Ch. 10 - Prob. 10.60QPCh. 10 - Prob. 10.61QPCh. 10 - Prob. 10.62QPCh. 10 - From the standard enthalpies of formation,...Ch. 10 - Prob. 10.64QPCh. 10 - Prob. 10.65QPCh. 10 - Prob. 10.66QPCh. 10 - Which is the more negative quantity at 25C: Hf for...Ch. 10 - Prob. 10.68QPCh. 10 - Prob. 10.69QPCh. 10 - Prob. 10.70QPCh. 10 - Prob. 10.71QPCh. 10 - Prob. 10.72QPCh. 10 - Prob. 10.73QPCh. 10 - Prob. 10.74QPCh. 10 - Prob. 10.75QPCh. 10 - Prob. 10.76QPCh. 10 - For the reaction 2C2H6(g)+7O2(g)4CO2(g)+6H2O(g)...Ch. 10 - Prob. 10.78QPCh. 10 - Prob. 10.79QPCh. 10 - Prob. 10.9VCCh. 10 - Prob. 10.10VCCh. 10 - Prob. 10.11VCCh. 10 - Prob. 10.12VCCh. 10 - Explain how the lattice energy of an ionic...Ch. 10 - Specify which compound in each of the following...Ch. 10 - Prob. 10.82QPCh. 10 - Prob. 10.83QPCh. 10 - Prob. 10.84QPCh. 10 - Prob. 10.85QPCh. 10 - Prob. 10.86QPCh. 10 - Prob. 10.87QPCh. 10 - Hydrazine (N2H4) decomposes according to the...Ch. 10 - Prob. 10.89QPCh. 10 - Prob. 10.90QPCh. 10 - Prob. 10.91QPCh. 10 - Prob. 10.92QPCh. 10 - Prob. 10.93QPCh. 10 - Prob. 10.94QPCh. 10 - You are given the following data....Ch. 10 - Prob. 10.96QPCh. 10 - Prob. 10.97QPCh. 10 - Prob. 10.98QPCh. 10 - Prob. 10.99QPCh. 10 - Compare the heat produced by the complete...Ch. 10 - The so-called hydrogen economy is based on...Ch. 10 - Prob. 10.102QPCh. 10 - Prob. 10.103QPCh. 10 - Prob. 10.104QPCh. 10 - Prob. 10.105QPCh. 10 - Prob. 10.106QPCh. 10 - Prob. 10.107QPCh. 10 - Prob. 10.108QPCh. 10 - A certain gas initially at 0.050 L undergoes...Ch. 10 - Prob. 10.110QPCh. 10 - The first step in the industrial recovery of zinc...Ch. 10 - Calculate the standard enthalpy change for the...Ch. 10 - Portable hot packs are available for skiers and...Ch. 10 - Prob. 10.114QPCh. 10 - Prob. 10.115QPCh. 10 - Prob. 10.116QPCh. 10 - Prob. 10.117QPCh. 10 - Prob. 10.118QPCh. 10 - Prob. 10.119QPCh. 10 - Prob. 10.120QPCh. 10 - Prob. 10.121QPCh. 10 - Prob. 10.122QPCh. 10 - Prob. 10.123QPCh. 10 - Prob. 10.124QPCh. 10 - Prob. 10.125QPCh. 10 - Vinyl chloride (C2H3Cl) differs from ethylene...Ch. 10 - Prob. 10.127QPCh. 10 - Prob. 10.128QPCh. 10 - Prob. 10.129QPCh. 10 - Determine the standard enthalpy of formation of...Ch. 10 - Prob. 10.131QPCh. 10 - Prob. 10.132QPCh. 10 - Prob. 10.133QPCh. 10 - Prob. 10.134QPCh. 10 - Prob. 10.135QPCh. 10 - Prob. 10.136QPCh. 10 - Both glucose and fructose arc simple sugars with...Ch. 10 - About 6.0 1013 kg of CO2 is fixed (converted to...Ch. 10 - Experiments show that it takes 1656 kJ/mol to...Ch. 10 - From a thermochemical point of view, explain why a...Ch. 10 - Prob. 10.141QPCh. 10 - Prob. 10.142QPCh. 10 - Prob. 10.143QPCh. 10 - Prob. 10.144QPCh. 10 - Prob. 10.145QPCh. 10 - Prob. 10.146QPCh. 10 - Prob. 10.147QPCh. 10 - Prob. 10.148QPCh. 10 - A drivers manual states that the stopping distance...Ch. 10 - Prob. 10.150QPCh. 10 - Prob. 10.151QPCh. 10 - Prob. 10.152QPCh. 10 - When 1.034 g of naphthalene (C10H8), is burned in...Ch. 10 - Prob. 10.154QPCh. 10 - A gas company in Massachusetts charges 27 cents...Ch. 10 - Prob. 10.156QPCh. 10 - Prob. 10.157QPCh. 10 - According to information obtained from...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The temperature of the cooling water as it leaves the hot engine of an automobile is 240 F. After it passes through the radiator it has a temperature of 175 F. Calculate the amount of heat transferred from the engine to the surroundings by one gallon of water with a specific heat of 4.184 J/g oC.arrow_forwardIn a coffee-cup calorimeter, 150.0 mL of 0.50 M HCI is added to 50.0 mL of 1.00 M NaOH to make 200.0 g solution at an initial temperature of 48.2C. If the enthalpy of neutralization for the reaction between a strong acid and a strong base is 56 kJ/mol, calculate the final temperature of the calorimeter contents. Assume the specific heat capacity of the solution is 4.184 J/g C and assume no heat Joss to the surroundings.arrow_forwardA 50-mL solution of a dilute AgNO3 solution is added to 100 mL of a base solution in a coffee-cup calorimeter. As Ag2O(s) precipitates, the temperature of the solution increases from 23.78 C to 25.19 C. Assuming that the mixture has the same specific heat as water and a mass of 150 g, calculate the heat q. Is the precipitation reaction exothermic or endothermic?arrow_forward
- A sample of sucrose, C12H22O11, is contaminated by sodium chloride. When the contaminated sample is burned in a bomb calorimeter, sodium chloride does not burn. What is the percentage of sucrose in the sample if a temperature increase of 1.67C is observed when 3.000 g of the sample are burned in the calorimeter? Sucrose gives off 5.64103kJ/mol when burned. The heat capacity of the calorimeter and water is 22.51 kJ/C.arrow_forwardA 0.470-g sample of magnesium reacts with 200 g dilute HCl in a coffee-cup calorimeter to form MgCl2(aq) and H2(g). The temperature increases by 10.9 C as the magnesium reacts. Assume that the mixture has the same specific heat as water and a mass of 200 g. (a) Calculate the enthalpy change for the reaction. Is the process exothermic or endothermic? (b) Write the chemical equation and evaluate H.arrow_forwardConsider the reaction 2HCl(aq)+Ba(OH)2(aq)BaCl2(aq)+2H2O(l)H=118KJ Calculate the heat when 100.0 rnL of 0.500 M HCl is mixed with 300.0 mL of 0.100 M Ba(OH)2 Assuming that the temperature of both solutions was initially 25.0C and that the final mixture has a mass of 400.0 g and a specific heat capacity of 4.18 J/C g, calculate the final temperature of the mixture.arrow_forward
- How much heat is produced when loo mL of 0.250 M HCl (density, 1.00 g/mL) and 200 mL of 0.150 M NaOH (density, 1.00 g/mL) are mixed? HCl(aq)+NaO(aq)NaCl(aq)+H2O(l)H298=58kJ If both solutions are at the same temperature and the heat capacity of the products is 4.19 J/g C, how much will the temperature increase? What assumption did you make in your calculation?arrow_forwardA 21.3-mL sample of 0.977 M NaOH is mixed with 29.5 mL of 0.918 M HCl in a coffee-cup calorimeter (see Section 6.6 of your text for a description of a coffee-cup calorimeter). The enthalpy of the reaction, written with the lowest whole-number coefficients, is 55.8 kJ. Both solutions are at 19.6C prior to mixing and reacting. What is the final temperature of the reaction mixture? When solving this problem, assume that no heat is lost from the calorimeter to the surroundings, the density of all solutions is 1.00 g/mL, the specific heat of all solutions is the same as that of water, and volumes are additive.arrow_forwardA 29.1-mL sample of 1.05 M KOH is mixed with 20.9 mL of 1.07 M HBr in a coffee-cup calorimeter (see Section 6.6 of your text for a description of a coffee-cup calorimeter). The enthalpy of the reaction, written with the lowest whole-number coefficients, is 55.8 kJ. Both solutions are at 21.8C prior to mixing and reacting. What is the final temperature of the reaction mixture? When solving this problem, assume that no heat is lost from the calorimeter to the surroundings, the density of all solutions is 1.00 g/mL, and volumes are additive.arrow_forward
- Use data from Table 4.2 to calculate the standard combustion enthalpy for conversion of sulfur dioxide, SO2(g), to sulfur trioxide, SO3(g). Table 4.2 Selected Standard Formation Enthalpies, fH, at 25Carrow_forwardWhen a 0.740-g sample of trinitrotoluene (TNT), C7H5N2O6, is burned in a bomb calorimeter, the temperature increases from 23.4 C to 26.9 C. The heat capacity of the calorimeter is 534 J/C, and it contains 675 mL of water. How much heat was produced by the combustion of the TNT sample?arrow_forwardSalicylic acid, C7H6O3, is one of the starting materials in the manufacture of aspirin. When 1.00 g of salicylic acid burns in a bomb calorimeter, the temperature of the bomb and water goes from 23.11C to 28.91C. The calorimeter and water absorb 21.9 kJ of heat. How much heat is given off when one mole of salicylic acid burns?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningWorld of ChemistryChemistryISBN:9780618562763Author:Steven S. ZumdahlPublisher:Houghton Mifflin College DivChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
World of Chemistry
Chemistry
ISBN:9780618562763
Author:Steven S. Zumdahl
Publisher:Houghton Mifflin College Div
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY