Mathematics: A Practical Odyssey
8th Edition
ISBN: 9781305104174
Author: David B. Johnson, Thomas A. Mowry
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10.1, Problem 13E
A biologist is conducting an experiment that involves a colony of fruit flies. (Biologists frequently study fruit flies. (Biologists frequently study fruit flies because their short life span allows the experimenters to easily study several generations). One day, there were
a. Develop the mathematical model that represents the population of flies.
b. Use the model to predict the population after one week.
c. Use the model to predict when the population will be double its initial size.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Indicate why the give method for running a simulation is not accurate.A bag contains 4 red marbles, 4 blue marbles, 6 yellow marbles, and 6 green marbles. If marbles are drawn one-by-one and not replaced, use 0-1 to represent a red marble, 2-3 to represent blue, 4-6 for yellow, and 7-9 to represent a green marble.
We know that physical exercise improves the body, but can it also improve the mind? Scientists at The Salk Institute at La Jolla, California, took a random sample of adult mice and divided them into two groups. Both groups were trained to find a platform in a maze filled with cloudy water. (Mice hate swimming, so they seek the platform as the refuge.) The first group of mice exercised on a running wheel, about 5 kilometers per day. The second group remained inactive. After one month, the mice were placed in the maze and timed until each reached the platform. The sample statistics are given below.Active group: n = 15, x ̄ = 17.6, s = 3.0 111Inactive group: n = 12, x ̄ = 27.1, s = 6.3 222(a) At 1% significance level conduct a hypothesis test to determine if exercise im- proves memory in adult mice; in other words, test if the active group is, on average, faster than the inactive group.(i.) State the hypotheses.(ii.) Test for equality of unknown population variances.(iii.) Calculate test…
The population of Boomtown is currently 12000 and expected to grow by 2.6% over the next year.
What will its population be by then?
The population of Dullsville, on the other hand, is currently 9000 and expected to decrease by 3%
over the next year. What will its population be by then?
Chapter 10 Solutions
Mathematics: A Practical Odyssey
Ch. 10.0A - In Exercises 1-12, find the value of u, v or b....Ch. 10.0A - Prob. 2ECh. 10.0A - Prob. 3ECh. 10.0A - Prob. 4ECh. 10.0A - In Exercises 1-12, find the value of u, v or b....Ch. 10.0A - Prob. 6ECh. 10.0A - Prob. 7ECh. 10.0A - Prob. 8ECh. 10.0A - Prob. 9ECh. 10.0A - In Exercises 1-12, find the value of u, v or b....
Ch. 10.0A - In Exercises 1-12, find the value of u, v or b....Ch. 10.0A - Prob. 12ECh. 10.0A - Prob. 13ECh. 10.0A - Prob. 14ECh. 10.0A - Prob. 15ECh. 10.0A - Prob. 16ECh. 10.0A - Prob. 17ECh. 10.0A - Prob. 18ECh. 10.0A - Prob. 19ECh. 10.0A - Prob. 20ECh. 10.0A - Prob. 21ECh. 10.0A - In Exercises 19-26, rewrite the exponential...Ch. 10.0A - In Exercises 19-26, rewrite the exponential...Ch. 10.0A - Prob. 24ECh. 10.0A - Prob. 25ECh. 10.0A - In Exercises 19-26, rewrite the exponential...Ch. 10.0A - Prob. 27ECh. 10.0A - Prob. 28ECh. 10.0A - Prob. 29ECh. 10.0A - Prob. 30ECh. 10.0A - Prob. 31ECh. 10.0A - Prob. 32ECh. 10.0A - Prob. 33ECh. 10.0A - Prob. 34ECh. 10.0A - Prob. 35ECh. 10.0A - Prob. 36ECh. 10.0A - Prob. 37ECh. 10.0A - In Exercises 27-56, use a calculator to find each...Ch. 10.0A - Prob. 39ECh. 10.0A - Prob. 40ECh. 10.0A - Prob. 41ECh. 10.0A - In Exercises 27-56, use a calculator to find each...Ch. 10.0A - Prob. 43ECh. 10.0A - Prob. 44ECh. 10.0A - Prob. 45ECh. 10.0A - Prob. 46ECh. 10.0A - Prob. 47ECh. 10.0A - Prob. 48ECh. 10.0A - Prob. 49ECh. 10.0A - Prob. 50ECh. 10.0A - Prob. 51ECh. 10.0A - Prob. 52ECh. 10.0A - Prob. 53ECh. 10.0A - Prob. 54ECh. 10.0A - Prob. 55ECh. 10.0A - Prob. 56ECh. 10.0A - Prob. 57ECh. 10.0A - Prob. 58ECh. 10.0A - Prob. 59ECh. 10.0A - Prob. 60ECh. 10.0A - Prob. 61ECh. 10.0A - Prob. 62ECh. 10.0A - Prob. 63ECh. 10.0A - Prob. 64ECh. 10.0A - Prob. 65ECh. 10.0A - Prob. 66ECh. 10.0A - Prob. 67ECh. 10.0B - In Exercises 1-12, simplify by using the Inverse...Ch. 10.0B - Prob. 2ECh. 10.0B - Prob. 3ECh. 10.0B - Prob. 4ECh. 10.0B - In Exercises 1-12, simplify by using the Inverse...Ch. 10.0B - Prob. 6ECh. 10.0B - Prob. 7ECh. 10.0B - Prob. 8ECh. 10.0B - Prob. 9ECh. 10.0B - Prob. 10ECh. 10.0B - Prob. 11ECh. 10.0B - Prob. 12ECh. 10.0B - Prob. 13ECh. 10.0B - Prob. 14ECh. 10.0B - In Exercises 13-22, rewrite the given logarithm so...Ch. 10.0B - Prob. 16ECh. 10.0B - Prob. 17ECh. 10.0B - Prob. 18ECh. 10.0B - Prob. 19ECh. 10.0B - Prob. 20ECh. 10.0B - In Exercises 13-12, rewrite the given logarithm so...Ch. 10.0B - Prob. 22ECh. 10.0B - Prob. 23ECh. 10.0B - Prob. 24ECh. 10.0B - Prob. 25ECh. 10.0B - Prob. 26ECh. 10.0B - Prob. 27ECh. 10.0B - Prob. 28ECh. 10.0B - Prob. 29ECh. 10.0B - Prob. 30ECh. 10.0B - Prob. 31ECh. 10.0B - Prob. 32ECh. 10.0B - Prob. 33ECh. 10.0B - Prob. 34ECh. 10.0B - Prob. 35ECh. 10.0B - Prob. 36ECh. 10.0B - Prob. 37ECh. 10.0B - Prob. 38ECh. 10.0B - Prob. 39ECh. 10.0B - Prob. 40ECh. 10.0B - Prob. 41ECh. 10.0B - Prob. 42ECh. 10.0B - Prob. 43ECh. 10.0B - Prob. 44ECh. 10.0B - Prob. 45ECh. 10.0B - Prob. 46ECh. 10.0B - Prob. 47ECh. 10.0B - Prob. 48ECh. 10.0B - Prob. 49ECh. 10.0B - Prob. 50ECh. 10.0B - Prob. 51ECh. 10.0B - Prob. 52ECh. 10.0B - Prob. 53ECh. 10.0B - Prob. 54ECh. 10.0B - Prob. 55ECh. 10.0B - Prob. 56ECh. 10.0B - Prob. 57ECh. 10.0B - Prob. 58ECh. 10.0B - Prob. 59ECh. 10.0B - Prob. 60ECh. 10.0B - Prob. 61ECh. 10.0B - Prob. 62ECh. 10.0B - Prob. 63ECh. 10.0B - Prob. 64ECh. 10.0B - Prob. 65ECh. 10.0B - Prob. 66ECh. 10.0B - Exercises 59-70 refer to Example 10. You want to...Ch. 10.0B - Prob. 68ECh. 10.0B - Prob. 69ECh. 10.0B - Prob. 70ECh. 10.0B - Prob. 71ECh. 10.0B - Prob. 72ECh. 10.0B - Prob. 73ECh. 10.0B - Prob. 74ECh. 10.0B - Prob. 75ECh. 10.0B - Prob. 76ECh. 10.0B - Prob. 77ECh. 10.0B - Prob. 78ECh. 10.0B - Prob. 79ECh. 10.0B - Prob. 80ECh. 10.0B - Prob. 81ECh. 10.0B - Prob. 82ECh. 10.0B - Prob. 83ECh. 10.0B - Prob. 84ECh. 10.0B - Prob. 85ECh. 10.0B - Prob. 86ECh. 10.1 - Use the model p=30e0.0198026273t developed in...Ch. 10.1 - Prob. 2ECh. 10.1 - Prob. 3ECh. 10.1 - Prob. 4ECh. 10.1 - Exercise 5-12 deal with data from the U.S. Bureau...Ch. 10.1 - Prob. 6ECh. 10.1 - Prob. 7ECh. 10.1 - Exercise 5-12 deal with data from the U.S. Bureau...Ch. 10.1 - Exercise 5-12 deal with data from the U.S. Bureau...Ch. 10.1 - Prob. 10ECh. 10.1 - Prob. 11ECh. 10.1 - Exercise 5-12 deal with data from the U.S. Bureau...Ch. 10.1 - A biologist is conducting an experiment that...Ch. 10.1 - A university keeps a number of mice for psychology...Ch. 10.1 - Prob. 15ECh. 10.1 - In July 2012, Alvarado Niles bought a house for...Ch. 10.1 - An October 2009 article in The Industry Standard...Ch. 10.1 - According to a September9,2007, article in ZDNet,...Ch. 10.1 - The number of cell phone subscribers has been...Ch. 10.1 - Prob. 20ECh. 10.1 - Prob. 21ECh. 10.1 - In 1969, the National Academy of Sciences...Ch. 10.1 - Prob. 23ECh. 10.1 - Prob. 24ECh. 10.1 - Use the data in Exercise 22 to complete the...Ch. 10.1 - Prob. 26ECh. 10.1 - Prob. 27ECh. 10.1 - Prob. 28ECh. 10.1 - Prob. 29ECh. 10.1 - Prob. 30ECh. 10.1 - Prob. 31ECh. 10.1 - Prob. 32ECh. 10.1 - Prob. 33ECh. 10.1 - Prob. 34ECh. 10.1 - Prob. 35ECh. 10.1 - Prob. 36ECh. 10.1 - Prob. 37ECh. 10.1 - Prob. 38ECh. 10.1 - Prob. 39ECh. 10.1 - Prob. 40ECh. 10.1 - Prob. 41ECh. 10.2 - Using the model Q=20e0.086643397t developed in...Ch. 10.2 - Prob. 2ECh. 10.2 - Prob. 3ECh. 10.2 - Using the model Q=8.2e0.053319013t developed in...Ch. 10.2 - Silicon-31 is used to diagnose certain medical...Ch. 10.2 - Plutonium-238 is used as a compact source of...Ch. 10.2 - How long will it take 64grams of magnesium 28 to...Ch. 10.2 - Prob. 8ECh. 10.2 - How long will it take 500grams of plutonium-241 to...Ch. 10.2 - Prob. 10ECh. 10.2 - Prob. 11ECh. 10.2 - Prob. 12ECh. 10.2 - How long will it take a given quantity of...Ch. 10.2 - How long will it take a given quantity of...Ch. 10.2 - Prob. 15ECh. 10.2 - Prob. 16ECh. 10.2 - In March 2011, the Fukushima Daiichi nuclear power...Ch. 10.2 - Prob. 18ECh. 10.2 - Prob. 19ECh. 10.2 - Prob. 20ECh. 10.2 - A lab technician had 58 grams of a radioactive...Ch. 10.2 - A lab technician had 32 grams of a radioactive...Ch. 10.2 - In 1989, a Mayan codex a remnant of ancient...Ch. 10.2 - Two Ohlone Indian skeletons, along with burial...Ch. 10.2 - In 1940, beautiful prehistoric cave paintings of...Ch. 10.2 - Prob. 26ECh. 10.2 - An ancient parchment contained 70 of the expected...Ch. 10.2 - Prob. 28ECh. 10.2 - Prob. 29ECh. 10.2 - Prob. 30ECh. 10.2 - Prob. 31ECh. 10.2 - How much carbon-14 would you expect to find in a...Ch. 10.2 - Prob. 33ECh. 10.2 - A museum claims that one of its skeleton is 9,000...Ch. 10.2 - Prob. 35ECh. 10.2 - Prob. 36ECh. 10.2 - Prob. 37ECh. 10.2 - In Example 8, we determined that 0.891(or89.1) of...Ch. 10.2 - Prob. 39ECh. 10.2 - Prob. 40ECh. 10.2 - Prob. 41ECh. 10.2 - Prob. 42ECh. 10.2 - Prob. 43ECh. 10.2 - What does the phrase half-life mean?Ch. 10.2 - Prob. 45ECh. 10.2 - Prob. 46ECh. 10.2 - Prob. 47ECh. 10.2 - Prob. 48ECh. 10.2 - Prob. 49ECh. 10.2 - Prob. 50ECh. 10.2 - Prob. 51ECh. 10.2 - Prob. 52ECh. 10.2 - Prob. 53ECh. 10.2 - Prob. 54ECh. 10.2 - Prob. 55ECh. 10.3 - In Exercises 1-4, find the magnitude of the given...Ch. 10.3 - In Exercises 1-4, find the magnitude of the given...Ch. 10.3 - In Exercises 1-4, find the magnitude of the given...Ch. 10.3 - In Exercises 1-4, find the magnitude of the given...Ch. 10.3 - In Exercises 5-12, use the information in Figure...Ch. 10.3 - In Exercises 5-12, use the information in Figure...Ch. 10.3 - Prob. 7ECh. 10.3 - Prob. 8ECh. 10.3 - Prob. 9ECh. 10.3 - In Exercises 5-12, use the information in Figure...Ch. 10.3 - Prob. 11ECh. 10.3 - Prob. 12ECh. 10.3 - Shortly after the 1989 San Francisco quake, it was...Ch. 10.3 - Prob. 14ECh. 10.3 - Prob. 15ECh. 10.3 - Prob. 16ECh. 10.3 - In Exercises 16-20, find the decibel rating of the...Ch. 10.3 - Prob. 18ECh. 10.3 - In Exercises 16-20, find the decibel rating of the...Ch. 10.3 - Prob. 20ECh. 10.3 - Prob. 21ECh. 10.3 - In Exercises 21-24, find the dB gain for the given...Ch. 10.3 - Prob. 23ECh. 10.3 - Prob. 24ECh. 10.3 - If a single singer is singing at 74dB, how many...Ch. 10.3 - If a single singer is singing at 74dB, how many...Ch. 10.3 - Prob. 27ECh. 10.3 - Prob. 28ECh. 10.3 - Prob. 29ECh. 10.3 - If a single trumpet is playing at 78dB, how many...Ch. 10.3 - Prob. 31ECh. 10.3 - Find a rule of thumb for the dB gain if the number...Ch. 10.3 - Prob. 33ECh. 10.3 - Prob. 34ECh. 10.3 - Prob. 35ECh. 10.3 - Prob. 36ECh. 10.3 - Prob. 37ECh. 10.3 - Prob. 38ECh. 10.3 - Prob. 39ECh. 10.3 - Prob. 40ECh. 10.CR - In Exercise 1-3, find the value of x. x=log381Ch. 10.CR - Prob. 2CRCh. 10.CR - Prob. 3CRCh. 10.CR - Prob. 4CRCh. 10.CR - Prob. 5CRCh. 10.CR - Prob. 6CRCh. 10.CR - Prob. 7CRCh. 10.CR - Prob. 8CRCh. 10.CR - Prob. 9CRCh. 10.CR - Prob. 10CRCh. 10.CR - Prob. 11CRCh. 10.CR - Prob. 12CRCh. 10.CR - Prob. 13CRCh. 10.CR - Prob. 14CRCh. 10.CR - Prob. 15CRCh. 10.CR - Prob. 16CRCh. 10.CR - Prob. 17CRCh. 10.CR - Prob. 18CRCh. 10.CR - Prob. 19CRCh. 10.CR - Prob. 20CRCh. 10.CR - Prob. 21CRCh. 10.CR - Prob. 22CRCh. 10.CR - Prob. 23CRCh. 10.CR - Prob. 24CRCh. 10.CR - Prob. 25CRCh. 10.CR - Prob. 26CRCh. 10.CR - Prob. 27CRCh. 10.CR - Prob. 28CRCh. 10.CR - Prob. 29CRCh. 10.CR - Prob. 30CRCh. 10.CR - Prob. 31CRCh. 10.CR - Prob. 32CRCh. 10.CR - Prob. 33CRCh. 10.CR - Prob. 34CRCh. 10.CR - Prob. 35CR
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- part Darrow_forwardAttachedarrow_forwardAn experimenter wants to study the relationship between type of milk and infant growth in underdeveloped countries. She randomly assigns 300 infants to either a breast-feeding group or an infant formula group. She then weighs the infants every three days for the first four weeks of life.arrow_forward
- A stable population of 35,000 birds lives on three islands. Each year 10% of the population on island A migrates to island B, 20% of the population on island B migrates to island C, and 5% of the population on island C migrates to island A. Find the number of birds on each island if the population count on each island does not vary from year to year.arrow_forwardMeghan is a psychology major who is testing a maze for a group of mice to navigate. In order for it to be productive for a class project, she would like the average time for a mouse to complete the maze to be 90 seconds. She randomly selects 28 mice and has each mouse complete the maze. Meghan records the time, in seconds, that each mouse needed to complete the maze. The results are provided in the accompanying data table. Based on research and previous results, Meghan assumes that the population is normally distributed and the population standard deviation is 5.80 seconds. Use Excel to test whether the mean amount of time a mouse completes the maze is 90 seconds, and then draw a conclusion in the context of the problem, where α=0.10. Time (seconds) 85.71 93.16 87.00 89.71 94.26 92.05 86.16 82.16 94.76 HelpCopy to ClipboardDownload CSV Select the correct answer below:…arrow_forwardJose visits campus every Thursday evening. However, some days the parking garage is full, often due to college events. There are academic events on 35% of evenings, sporting events on 20% of evenings, and no events on 45% of evenings. When there is an academic event, the garage fills up about 25% of the time, and it fills up 70% of evenings with sporting events. On evenings when there are no events, it only fills up about 5% of the time. If Jose comes to campus and finds the garage full, what is the probability that there is a sporting event? A. Draw a tree diagram (marginal probabilities in the primary branch and conditional probabilities in the secondary branches). B. What is the probability that there is a sporting event when Jose finds the garage full?arrow_forward
- Cooling down with a cold drink before exercise in the heat is believed to help an athlete perform. Researcher J. Dugas explored the difference between cooling down with an ice slurry (slushy) and with cold water. Ten male participants drank a flavored ice slurry and ran a treadmill in a controlled hot and humid environment. Days later, the same participants drank cold water and ran on a treadmill in the same hot and humid environment. The following table shows the times, in minutes, it took to fatigue on the treadmill for both the ice slurry and the cold water. Subject Cold Water 1 52 2 37 3 44 4 51 5 34 6 38 7 41 8 50 9 29 10. 38 Ice Slurry 56 43 52 58 38 45 45 58 34 44 At the 1% significance level, do the data provide sufficient evidence to conclude that, on average, cold water is less effective than ice slurry for optimizing athletic performance in the heat? (Note: the mean and standard deviation of the paired differences are – 5.9 and 1.60…arrow_forwardCooling down with a cold drink before exercise in the heat is believed to help an athlete perform. Researcher J. Dugas explored the difference between cooling down with an ice slurry (slushy) and with cold water. Ten male participants drank a flavored ice slurry and ran a treadmill in a controlled hot and humid environment. Days later, the same participants drank cold water and ran on a treadmill in the same hot and humid environment. The following table shows the times, in minutes, it took to fatigue on the treadmill for both the ice slurry and the cold water. Subject Cold Water 1 52 2 37 3 44 4 51 5 34 6 38 7 41 8 50 9 29 10 38 Ice Slurry 56, 43, 52, 58, 38, 45, 45, 58, 34, 44 find a 98% confidence interval for the differences between the mean times to fatigue on a treadmill in a hot and humid environment after cooling down with cold water and after cooling down with an ice slurry.arrow_forwardLyme disease is spread in the northeastern United States by infected ticks. The ticks are infected mainly by feeding on mice, so more mice result in more infected ticks. The mouse population in turn rises and falls with the abundance of acorns, their favored food. Experimenters studied two similar forest areas in a year when the acorn crop failed. They added hundreds of thousands of acorns to one area to imitate an abundant acorn crop, while leaving the other area untouched. The next spring, 54 of the 72 mice trapped in the first area were in breeding condition, versus 10 of the 17 mice trapped in the second area. Estimate the difference between the proportions of mice ready to breed in good acorn years and bad acorn years. Let p1 and p2 be (respectively) the proportions of mice ready to breed in good acorn years and bad acorn years. Find the LOWER LIMIT(Lower value) of a 90% confidence interval for p1-p2 .arrow_forward
- Choose the best answer to the following question. Explain your reasoning with one or more complete sentences. A town's population increases in one year from 100,000 to 113,000. If the population is growing linearly, at a steady rate, then what will the population be at the end of a second year? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. each year. A. The population will be 127,690 because the population increases by (Type a whole number.) each year. O B. The population will be 126,000 because the population increases by (Type a whole number.) O C. The population will be 126,000 because the population increases by a factor of (Type a whole number.) each year. each year. O D. The population will be 127,690 because the population increases by a factor of (Type a whole nùmber.) O E. The population will be 113,000 because the population holds steady after the first year. Click to select and enter your answer(s) and then click Check…arrow_forwardLyme disease is spread in the northeastern United States by infected ticks. The ticks are infected mainly by feeding on mice, so more mice result in more infected ticks. The mouse population in turn rises and falls with the abundance of acorns their favored food. Experimenters studied two similar forest areas in a year when the acorn crop failed. They added hundreds of thousands of acorns to one area to imitate an abundant acorn crop, while leaving the other area untouched. The next spring, 54 of the 77 mice trapped in the first area were in breeding condition versus 9 of the 15 mice trapped in the second area. Give a 99% confidence interval for the difference between the proportion of mice ready to breed in good acorn years and bad acorn years. Follow the Toolbox. Lower bound:___________________ Upper bound:___________________arrow_forwardDonna wants to grow corn on the farm she just bought. The previous farmer grew corn for several decades and kept detailed records of his crop production each year. These records include the amount of sunlight, the amount of rain, the average yield, and other such figures. In an effort to help Donna out, the previous farmer compares his records of using two popular fertilizers: Earthy and SunX. He pulls his records for the 7 seasons he used Earthy on his corn and the records for the 7 seasons that he used SunX on his corn. He uses these records to compare the average corn yield for the 7 seasons that he used Earthy to the average corn yield for the 7 seasons that he used SunX. If applicable, he will recommend the better fertilizer to Donna. (a)First choose whether the procedure described above is an observational study or a designed experiment. Then further categorize the procedure by choosing the correct type of observational study or designed experiment. Observational study Designed…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Propositional Logic, Propositional Variables & Compound Propositions; Author: Neso Academy;https://www.youtube.com/watch?v=Ib5njCwNMdk;License: Standard YouTube License, CC-BY
Propositional Logic - Discrete math; Author: Charles Edeki - Math Computer Science Programming;https://www.youtube.com/watch?v=rL_8y2v1Guw;License: Standard YouTube License, CC-BY
DM-12-Propositional Logic-Basics; Author: GATEBOOK VIDEO LECTURES;https://www.youtube.com/watch?v=pzUBrJLIESU;License: Standard Youtube License
Lecture 1 - Propositional Logic; Author: nptelhrd;https://www.youtube.com/watch?v=xlUFkMKSB3Y;License: Standard YouTube License, CC-BY
MFCS unit-1 || Part:1 || JNTU || Well formed formula || propositional calculus || truth tables; Author: Learn with Smily;https://www.youtube.com/watch?v=XV15Q4mCcHc;License: Standard YouTube License, CC-BY