Conceptual Physical Science (6th Edition)
6th Edition
ISBN: 9780134060491
Author: Paul G. Hewitt, John A. Suchocki, Leslie A. Hewitt
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 97E
A railroad locomotive is at rest with its whistle shrieking, and then it starts moving toward you.
- (a) Does the frequency of the sound that you hear increase, decrease, or stay the same?
- (b) How about the wavelength reaching your ear?
- (c) How about the speed of sound in the air between you and the locomotive?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
Conceptual Physical Science (6th Edition)
Ch. 10 - What is the source of all waves?Ch. 10 - Distinguish between these parts of a wave: period,...Ch. 10 - How are frequency and period related to each...Ch. 10 - In one word, what is it that moves from source to...Ch. 10 - Does the medium in which a wave travels move with...Ch. 10 - What is the relationship among frequency,...Ch. 10 - In what direction are the vibrations in a...Ch. 10 - In what direction do compressed regions and...Ch. 10 - Does sound travel faster in warm air or in cold...Ch. 10 - How does the speed of sound in water compare with...
Ch. 10 - What is the law of reflection for sound?Ch. 10 - What is a reverberation?Ch. 10 - Relate wave speed and bending to the phenomenon of...Ch. 10 - Does sound tend to bend upward or downward when it...Ch. 10 - How do dolphins perceive their environment in dark...Ch. 10 - Why does a struck tuning fork sound louder when...Ch. 10 - Distinguish between forced vibrations and...Ch. 10 - When you listen to a radio, why do you hear only...Ch. 10 - Why do troops break step when crossing a bridge?Ch. 10 - What kinds of waves exhibit interference?Ch. 10 - Distinguish between constructive interference and...Ch. 10 - What does it mean to say that one wave is out of...Ch. 10 - What physical phenomenon underlies beats?Ch. 10 - What is a node? What is an antinode?Ch. 10 - In the Doppler effect, does frequency change? Does...Ch. 10 - Can the Doppler effect be observed with...Ch. 10 - How do the speed of a wave source and the speed of...Ch. 10 - How does the V shape of a bow wave depend on the...Ch. 10 - True or false: A sonic boom occurs only when an...Ch. 10 - Distinguish between a musical sound and noise.Ch. 10 - A pendulum swings to and fro every 3 seconds. Show...Ch. 10 - Another pendulum swings to and fro at a regular...Ch. 10 - A wave 3 m long oscillates 1.5 times each, second....Ch. 10 - Show that a certain wave with a 1.2-m wavelength...Ch. 10 - A tuning fork produces a sound with a frequency of...Ch. 10 - A nurse approaches his patient and counts 72...Ch. 10 - A weight suspended from a spring is seen to bob up...Ch. 10 - We know that speed v = distance/time. Show that...Ch. 10 - A skipper on a boat notices wave crests passing...Ch. 10 - A mosquito flaps its wings at the rate of 600...Ch. 10 - The highest-frequency sound humans can hear is...Ch. 10 - Microwave ovens typically cook food using...Ch. 10 - For years, marine scientists were mystified by...Ch. 10 - An oceanic depth-sounding vessel surveys the ocean...Ch. 10 - A bat flying in a cave emits a sound and receives...Ch. 10 - Susie hammers on a block of wood 85 m from a large...Ch. 10 - Imagine an old hermit living in a cave in the...Ch. 10 - On a piano keyboard, you strike middle C, of...Ch. 10 - (a) Say you were foolish enough to play your...Ch. 10 - A beat frequency is equal to the difference...Ch. 10 - As shown in the drawing, the half-angle of the...Ch. 10 - All the waves shown have the same speed b: the...Ch. 10 - Four different pairs of transverse wave pulses...Ch. 10 - Rank, from highest to lowest, the pitch heard when...Ch. 10 - The following three shock waves are produced by...Ch. 10 - Rank, from greatest to least, the speed of sound...Ch. 10 - Rank the beat frequencies, from highest to lowest,...Ch. 10 - Phil Physiker blows across the mouths of identical...Ch. 10 - A student that youre tutoring says that the terms...Ch. 10 - You dip your finger at a steady rate into a puddle...Ch. 10 - Red light has a longer wavelength than violet...Ch. 10 - When sound becomes louder, which wave...Ch. 10 - What two physics mistakes occur in a...Ch. 10 - How does the frequency of vibration of a small...Ch. 10 - A friend says that wave speed is equal to the...Ch. 10 - What kind of motion should you impart to the...Ch. 10 - What kind of motion should you impart to a...Ch. 10 - A cat can hear sound frequencies up to 70,000 Hz....Ch. 10 - The sounds emitted by bats are extremely intense....Ch. 10 - Why do you not hear the sound of a distant...Ch. 10 - If the Moon blew up, why would we not hear the...Ch. 10 - Why would it be futile to attempt to detect sounds...Ch. 10 - A pair of sound waves of different wavelengths...Ch. 10 - In Olympic competition, the sound of the starters...Ch. 10 - A friend says that sound travels faster in warm...Ch. 10 - Why does your voice sound fuller when you are...Ch. 10 - A bat chirps as it flies toward a wall. Is the...Ch. 10 - A friend says that refraction of any kind of wave...Ch. 10 - Why are marchers following a hand at the end of a...Ch. 10 - What is the danger posed by people in the balcony...Ch. 10 - Why is the sound of a harp soft compared with the...Ch. 10 - What physics principle does Manuel use when he...Ch. 10 - How can a certain note sung by a singer cause a...Ch. 10 - A nylon guitar string vibrates in a standing-wave...Ch. 10 - Two bunnies hop at slightly different rates but...Ch. 10 - Suppose a piano tuner hears three beats per second...Ch. 10 - When the frequency of sound is doubled, what...Ch. 10 - A railroad locomotive is at rest with its whistle...Ch. 10 - When you blow your horn while driving toward a...Ch. 10 - How does the Doppler effect aid police in...Ch. 10 - Astronomers find that light emitted by a...Ch. 10 - Would it be correct to say that the Doppler effect...Ch. 10 - A swimming cluck produces a bow wave attached to...Ch. 10 - Does the conical angle of a shock wave become...Ch. 10 - If the sound of an airplane does not originate in...Ch. 10 - Why is it that a subsonic aircraft, no matter how...Ch. 10 - Distinguish between noise and music in terms of...Ch. 10 - If the fundamental frequency of a guitar string is...Ch. 10 - How many nodes, excluding end points, are in a...Ch. 10 - Which of the two musical notes displayed...Ch. 10 - What characteristic of sound distinguishes a piano...Ch. 10 - What does it mean to say that a radio station is...Ch. 10 - At the instant that a high-pressure region is...Ch. 10 - If a bell is ringing inside a bell jar, we can no...Ch. 10 - If the speed of sound depended on its frequency,...Ch. 10 - Why is the Moon described as a silent planet?Ch. 10 - Discuss why sound travels faster in moist air....Ch. 10 - Why is an echo weaker than the original sound?...Ch. 10 - One rule of thumb for estimating the distance in...Ch. 10 - If a single disturbance at an unknown distance...Ch. 10 - As you pour water into a glass, you repeatedly tap...Ch. 10 - Physics instructor Peter Hopkinson delights in...Ch. 10 - What physics principle is used in radar guns to...Ch. 10 - A special device can transmit sound that is out of...Ch. 10 - Two sound waves of the same frequency can...Ch. 10 - Discuss whether or not a sonic boom occurs at the...Ch. 10 - When we consider the time it takes for a pendulum...Ch. 10 - The vibrations along a transverse wave move (a)...Ch. 10 - A common example of a longitudinal wave is (a)...Ch. 10 - The speed of sound varies with (a) amplitude. (b)...Ch. 10 - The loudness of a sound is most closely related to...Ch. 10 - The explanation for the refraction of sound must...Ch. 10 - Wave interference occurs in (a) transverse waves....Ch. 10 - Noise-canceling devices such as jackhammer...Ch. 10 - When a 134-Hz tuning fork and a 144-Hz tuning fork...Ch. 10 - A sonic boom cannot be produced by (a) an aircraft...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What is the reducing agent in the following reaction?
2 Br –– (aq) + H2 O2 (aq) + 2 H+ (aq) → Br2 (aq) + 2 H2 ...
Chemistry: The Central Science (14th Edition)
Modified True/False 9. A giant bacterium that is large enough to be seen without a microscope is Selenomonas.
Microbiology with Diseases by Body System (5th Edition)
Which type of cartilage is most plentiful in the adult body?
Anatomy & Physiology (6th Edition)
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
32. The centers of a 10 kg lead ball and a 100 g lead ball are separated by 10 cm.
a. What gravitational force ...
College Physics: A Strategic Approach (3rd Edition)
Pus is both a sign of infection and an indicator of immune defenses in action. Explain.
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A siren mounted 011 the roof of a firehouse emits sound at a frequency of 900 Hz. A steady wind is blowing with a speed of 15.0 m/s. Taking the speed of sound in calm air to be 343 m/s. find the wavelength of the sound (a) upwind of the siren and (b) downwind of the siren. Firefighters are approaching the siren from various directions at 15.0 m/s. What frequency does a firefighter hear (c) if she is approaching from an upwind position so that site is moving in the direction in which the wind is blowing and (d) if she is approaching from a downwind position and moving against the wind?arrow_forwardA cable with a linear density of =0.2 kg/m is hung from telephone poles. The tension in the cable is 500.00 N. The distance between poles is 20 meters. The wind blows across the line, causing the cable resonate. A standing waves pattern is produced that has 4.5 wavelengths between the two poles. The air temperature is T=20C . What are the frequency and wavelength of the hum?arrow_forwardThe area of a typical eardrum is about 5.00 X 10-5 m2. (a) (Calculate the average sound power incident on an eardrum at the threshold of pain, which corresponds to an intensity of 1.00 W/m2. (b) How much energy is transferred to the eardrum exposed to this sound lor 1.00 mill?arrow_forward
- As you travel down the highway in your car, an ambulance approaches you from the rear at a high speed (Fig. OQ13.15) sounding its siren at a frequency of 500 Hz. Which statement is correct? (a) You hear a frequency less than 500 Hz. (b) You hear a frequency equal to 500 Hz. (c) You hear a frequency greater than 500 Hz. (d) You hear a frequency greater than 500 Hz, whereas the ambulance driver hears a frequency lower than 500 Hz. (e) You hear a frequency less than 500 Hz, whereas the ambulance driver hears a frequency of 500 Hz. Figure OQ13.15arrow_forwardAs you travel down the highway in your car, an ambulance approaches you from the rear at a high speed (Fig. OQ17.3) sounding its siren at a frequency of 500 Hz. Which statement is correct? (a) You hear a frequency less than 500 Hz. (b) You hear a frequency equal to 500 Hz. (c) You hear a frequency greater than 500 Hz. (d) You hear a frequency greater than 500 Hz. whereas the ambulance driver hears a frequency lower than 500 Hz. (e) You hear a frequency less than 500 Hz. whereas (he ambulance driver hears a frequency of 500 Hz.arrow_forwardA string is fixed at both end. The mass of the string is 0.0090 kg and the length is 3.00 m. The string is under a tension of 200.00 N. The string is driven by a variable frequency source to produce standing waves on the string. Find the wavelengths and frequency of the first four modes of standing waves.arrow_forward
- Consider the experimental setup shown below. The length of the string between the string vibrator and the pulley is L=1.00 m. The linear density of the string is =0.006 kg/m. The string vibrator can oscillate at any frequency. The hanging mass is 2.00 kg. (a)What are the wavelength and frequency of n=6 mode? (b) The string oscillates the air around the string. What is the wavelength of the sound if the speed of the sound is vs=343.00 m/s?arrow_forwardThe overall length of a piccolo is 32.0 cm. The resonating air column is open at both ends. (a) Find the frequency of the lowest note a piccolo can sound. (b) Opening holes in the side of a piccolo effectively shortens the length of the resonant column. Assume the highest note a piccolo can sound is 4 000 Hz. Find the distance between adjacent anti-nodes for this mode of vibration.arrow_forwardA speaker is placed at the opening of a long horizontal tube. The speaker oscillates at a frequency f, creating a sound wave that moves down the tube. The wave moves through the tube at a speed of v=340.00 m/s. The sound wave is modeled with the wave function s(x,t)=smaxcos(kxt+) . At time t=0.00 s , an air molecule at x=3.5 m is at the maximum displacement of 7.00 nm. At the same time, another molecule at x=3.7 m has a displacement of 3.00 nm. What is the frequency at which the speaker is oscillating?arrow_forward
- A piano tuner uses a 512-Hz tuning fork to tune a piano. He strikes the fork and hits a key on the piano and hears a beat frequency of 5 Hz. He tightens the string of the piano, and repeats the procedure. Once again he hears a beat frequency of 5 Hz. What happened?arrow_forwardIn Figure OQ14.3, a sound wave of wavelength 0.8 m divides into two equal parts that recombine to interfere constructively, with the original difference between their path lengths being |r2 − r1| = 0.8 m. Rank the following situations according to the intensity of sound at the receiver from the highest to the lowest. Assume the tube walls absorb no sound energy. Give equal ranks to situations in which the intensity is equal. (a) From its original position, the sliding section is moved out by 0.1 m. (b) Next it slides out an additional 0.1 m. (c) It slides out still another 0.1 m. (d) It slides out 0.1 m more. Figure OQ14.3arrow_forwardA speaker is placed at the opening of a long horizontal tube. The speaker oscillates at a frequency of f, creating a sound wave that moves down the tube. The wave moves through the tube at a speed of v=340.00 m/s. The sound wave is modeled with the wave function s(x,t)=smaxcos(kxt+) . At time t=0.00 s , an air molecule at x=2.3 m is at the maximum displacement of 6.34 nm. At the same time, another molecule at x=2.7 m has a displacement of 2.30 nm. What is the wave function of the sound wave, that is, find the wave number, angular frequency, and the initial phase shift?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Supersonic Speed and Shock Waves; Author: AK LECTURES;https://www.youtube.com/watch?v=HfSSi3KJZB0;License: Standard YouTube License, CC-BY