Practical Management Science
6th Edition
ISBN: 9781337406659
Author: WINSTON, Wayne L.
Publisher: Cengage,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 46P
Summary Introduction
To explain: If it is possible for one value to beat the other simply by some random luck.
Simulation modeling:
A simulation model is a computerized model that depicts or imitates a real-life situation. It is like other mathematical models except that it incorporates the concept of uncertainty in one or more number of the input variables.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Your answer is partially correct.
An independent contractor for a transportation company needs to determine whether she should upgrade the vehicle she currently
owns or trade her vehicle in to lease a new vehicle. If she keeps her vehicle, she will need to invest in immediate upgrades that cost
$5,200 and it will cost $1,300 per year to operate at the end of year that follows. She will keep the vehicle for 5 years; at the end of this
period, the upgraded vehicle will have a salvage value of $3,800. Alternatively, she could trade in her vehicle to lease a new vehicle. She
estimates that her current vehicle has a trade-in value of $9,800 and that there will be $4,100 due at lease signing. She further
estimates that it will cost $2,900 per year to lease and operate the vehicle. The independent contractor's MARR is 11%. Compute the
EUAC of both the upgrade and lease alternatives using the insider perspective.
Click here to access the TVM Factor Table Calculator.
1943.56
EUAC(keep):
$…
Suppose a risk-neutral power plant needs 10,000 tons of coal for itsoperations next month. It is uncertain about the future price of coal. Theprice of coal today is $60 a ton but next month it could be either $40 or$68 (with equal probability). How much would the power plant be willingto pay today for an option to buy a ton of coal next month at today’sprice? (Ignore discounting over the short period of a month.)
A NY Times best-selling author wants to write a new book as either volume II of her earlier successful book or an autobiography. She believes that by writing the volume II, given her previous success, she will have a 50% chance of placing it with a major publisher where it should ultimately sell about 40,000 copies. However, the worst-case scenario, if she can’t get a major publisher to take it, then she thinks there is 80% chance of placing it with a smaller publisher, with sales of 30,000 copies. On the other hand, if she writes an autobiography, considering the potential interest in her journey as successful writer, she thinks there will be 40% chance of placing it with a major publisher, and it should result in ultimate sales of about 50,000 copies. If she can’t get a major publisher to take it, the worst-case scenario, she thinks there is a 50% chance of placing it with a smaller publisher, with ultimate sales of 35,000 copies.
Construct a decision tree to help this author…
Chapter 10 Solutions
Practical Management Science
Ch. 10.2 - Use the RAND function and the Copy command to...Ch. 10.2 - Use Excels functions (not @RISK) to generate 1000...Ch. 10.2 - Use @RISK to draw a uniform distribution from 400...Ch. 10.2 - Use @RISK to draw a normal distribution with mean...Ch. 10.2 - Use @RISK to draw a triangular distribution with...Ch. 10.2 - Use @RISK to draw a binomial distribution that...Ch. 10.2 - Use @RISK to draw a triangular distribution with...Ch. 10.2 - We all hate to keep track of small change. By...Ch. 10.4 - Prob. 11PCh. 10.4 - In August of the current year, a car dealer is...
Ch. 10.4 - Prob. 13PCh. 10.4 - Prob. 14PCh. 10.4 - Prob. 15PCh. 10.5 - If you add several normally distributed random...Ch. 10.5 - In Problem 11 from the previous section, we stated...Ch. 10.5 - Continuing the previous problem, assume, as in...Ch. 10.5 - In Problem 12 of the previous section, suppose...Ch. 10.5 - Use @RISK to analyze the sweatshirt situation in...Ch. 10.5 - Although the normal distribution is a reasonable...Ch. 10.6 - When you use @RISKs correlation feature to...Ch. 10.6 - Prob. 24PCh. 10.6 - Prob. 25PCh. 10.6 - Prob. 28PCh. 10 - Six months before its annual convention, the...Ch. 10 - Prob. 30PCh. 10 - A new edition of a very popular textbook will be...Ch. 10 - Prob. 32PCh. 10 - W. L. Brown, a direct marketer of womens clothing,...Ch. 10 - Assume that all of a companys job applicants must...Ch. 10 - Lemingtons is trying to determine how many Jean...Ch. 10 - Dilberts Department Store is trying to determine...Ch. 10 - It is surprising (but true) that if 23 people are...Ch. 10 - Prob. 40PCh. 10 - At the beginning of each week, a machine is in one...Ch. 10 - Simulation can be used to illustrate a number of...Ch. 10 - Prob. 43PCh. 10 - Prob. 46PCh. 10 - If you want to replicate the results of a...Ch. 10 - Suppose you simulate a gambling situation where...Ch. 10 - Prob. 49PCh. 10 - Big Hit Video must determine how many copies of a...Ch. 10 - Prob. 51PCh. 10 - Prob. 52PCh. 10 - Why is the RISKCORRMAT function necessary? How...Ch. 10 - Consider the claim that normally distributed...Ch. 10 - Prob. 55PCh. 10 - When you use a RISKSIMTABLE function for a...Ch. 10 - Consider a situation where there is a cost that is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- A martingale betting strategy works as follows. You begin with a certain amount of money and repeatedly play a game in which you have a 40% chance of winning any bet. In the first game, you bet 1. From then on, every time you win a bet, you bet 1 the next time. Each time you lose, you double your previous bet. Currently you have 63. Assuming you have unlimited credit, so that you can bet more money than you have, use simulation to estimate the profit or loss you will have after playing the game 50 times.arrow_forwardBased on Marcus (1990). The Balboa mutual fund has beaten the Standard and Poors 500 during 11 of the last 13 years. People use this as an argument that you can beat the market. Here is another way to look at it that shows that Balboas beating the market 11 out of 13 times is not unusual. Consider 50 mutual funds, each of which has a 50% chance of beating the market during a given year. Use simulation to estimate the probability that over a 13-year period the best of the 50 mutual funds will beat the market for at least 11 out of 13 years. This probability turns out to exceed 40%, which means that the best mutual fund beating the market 11 out of 13 years is not an unusual occurrence after all.arrow_forwardA common decision is whether a company should buy equipment and produce a product in house or outsource production to another company. If sales volume is high enough, then by producing in house, the savings on unit costs will cover the fixed cost of the equipment. Suppose a company must make such a decision for a four-year time horizon, given the following data. Use simulation to estimate the probability that producing in house is better than outsourcing. If the company outsources production, it will have to purchase the product from the manufacturer for 25 per unit. This unit cost will remain constant for the next four years. The company will sell the product for 42 per unit. This price will remain constant for the next four years. If the company produces the product in house, it must buy a 500,000 machine that is depreciated on a straight-line basis over four years, and its cost of production will be 9 per unit. This unit cost will remain constant for the next four years. The demand in year 1 has a worst case of 10,000 units, a most likely case of 14,000 units, and a best case of 16,000 units. The average annual growth in demand for years 2-4 has a worst case of 7%, a most likely case of 15%, and a best case of 20%. Whatever this annual growth is, it will be the same in each of the years. The tax rate is 35%. Cash flows are discounted at 8% per year.arrow_forward
- Big Hit Video must determine how many copies of a new video to purchase. Assume that the companys goal is to purchase a number of copies that maximizes its expected profit from the video during the next year. Describe how you would use simulation to shed light on this problem. Assume that each time a video is rented, it is rented for one day.arrow_forwardYou have 5 and your opponent has 10. You flip a fair coin and if heads comes up, your opponent pays you 1. If tails comes up, you pay your opponent 1. The game is finished when one player has all the money or after 100 tosses, whichever comes first. Use simulation to estimate the probability that you end up with all the money and the probability that neither of you goes broke in 100 tosses.arrow_forwardYou now have 10,000, all of which is invested in a sports team. Each year there is a 60% chance that the value of the team will increase by 60% and a 40% chance that the value of the team will decrease by 60%. Estimate the mean and median value of your investment after 50 years. Explain the large difference between the estimated mean and median.arrow_forward
- A new edition of a very popular textbook will be published a year from now. The publisher currently has 1000 copies on hand and is deciding whether to do another printing before the new edition comes out. The publisher estimates that demand for the book during the next year is governed by the probability distribution in the file P10_31.xlsx. A production run incurs a fixed cost of 15,000 plus a variable cost of 20 per book printed. Books are sold for 190 per book. Any demand that cannot be met incurs a penalty cost of 30 per book, due to loss of goodwill. Up to 1000 of any leftover books can be sold to Barnes and Noble for 45 per book. The publisher is interested in maximizing expected profit. The following print-run sizes are under consideration: 0 (no production run) to 16,000 in increments of 2000. What decision would you recommend? Use simulation with 1000 replications. For your optimal decision, the publisher can be 90% certain that the actual profit associated with remaining sales of the current edition will be between what two values?arrow_forwardPlay Things is developing a new Lady Gaga doll. The company has made the following assumptions: The doll will sell for a random number of years from 1 to 10. Each of these 10 possibilities is equally likely. At the beginning of year 1, the potential market for the doll is two million. The potential market grows by an average of 4% per year. The company is 95% sure that the growth in the potential market during any year will be between 2.5% and 5.5%. It uses a normal distribution to model this. The company believes its share of the potential market during year 1 will be at worst 30%, most likely 50%, and at best 60%. It uses a triangular distribution to model this. The variable cost of producing a doll during year 1 has a triangular distribution with parameters 15, 17, and 20. The current selling price is 45. Each year, the variable cost of producing the doll will increase by an amount that is triangularly distributed with parameters 2.5%, 3%, and 3.5%. You can assume that once this change is generated, it will be the same for each year. You can also assume that the company will change its selling price by the same percentage each year. The fixed cost of developing the doll (which is incurred right away, at time 0) has a triangular distribution with parameters 5 million, 7.5 million, and 12 million. Right now there is one competitor in the market. During each year that begins with four or fewer competitors, there is a 25% chance that a new competitor will enter the market. Year t sales (for t 1) are determined as follows. Suppose that at the end of year t 1, n competitors are present (including Play Things). Then during year t, a fraction 0.9 0.1n of the company's loyal customers (last year's purchasers) will buy a doll from Play Things this year, and a fraction 0.2 0.04n of customers currently in the market ho did not purchase a doll last year will purchase a doll from Play Things this year. Adding these two provides the mean sales for this year. Then the actual sales this year is normally distributed with this mean and standard deviation equal to 7.5% of the mean. a. Use @RISK to estimate the expected NPV of this project. b. Use the percentiles in @ RISKs output to find an interval such that you are 95% certain that the companys actual NPV will be within this interval.arrow_forwardThe game of Chuck-a-Luck is played as follows: You pick a number between 1 and 6 and toss three dice. If your number does not appear, you lose 1. If your number appears x times, you win x. On the average, use simulation to find the average amount of money you will win or lose on each play of the game.arrow_forward
- I need a detailed explanation on how to solve this problem: A bagel shop buys each bagel for $0.08 and sells each bagel for $0.35. Leftover bagels at the end of the day are purchased by a local soup kitchen for $0.03 per bagel. The shop’s owner has observed for the daily demand, Q, the following probabilities, f(Q): Q 0 5 10 15 20 25 30 35 f(Q) 0.05 0.10 0.10 0.20 0.25 0.15 0.10 0.05 - What is the optimal daily order in multiples of 5 (include the model name and formula)? - If the daily demand is normally distributed (the mean and variance can be obtained from the table above), then what is the optimal daily order?arrow_forwardFor a given perishable product, a retailer pays $5 for each unit, then sells them for $10 each. At the end of the day, units not sold at the store are disposed of, and the retailer receives just $1 for each. Given the following probability distribution describing daily demand, how many units should be stocked? x Prob. (Demand = x) x Prob. (Demand = x) 0 0.01 7 0.18 1 0.02 8 0.14 2 0.04 9 0.09 3 0.07 10 0.05 4 0.09 11 0.02 5 0.12 12 0.01 6 0.15 13 0.01arrow_forwardA particular company is considering a $3 million research and development (R&D) project. Profit projections appear promising, but the president of the company is concerned because the probability that the R&D project will be successful is only 0.50. Secondly, the president knows that even if the project is successful, it will require that the company build a new production facility at a cost of $20 million in order to manufacture the product. If the facility is built, uncertainty remains about the demand and thus uncertainty about the profit that will be realized. Another option is that if the R&D project is successful, the company could sell the rights to the product for an estimated $23 million. Under this option, the company would not build the $20 million production facility. Consider the decision tree. Start R&D Project ($3 million) 1 Successful .5 Not Successful .5 Do Not Start R&D Project 3 Building Facility ($20 million) Sell Rights 4 What is the expected value of your strategy…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,