Concept explainers
The shaft is made of A992 steel and has an allowable shear stress of τallow = 75 MPa. when the shaft is rotating at 300 rpm, the motor supplies 8 kW of power, while gears A and B withdraw 5 kW and 3 kW, respectively. Determine the required minimum diameter of the shaft to the nearest millimeter. Also, find the rotation of gear A relative to C.
Probs. R10-1/2
Find the required minimum diameter of the shaft and the angle of twist of gear A relative to gear C.
Answer to Problem 1RP
The required minimum diameter of the shaft is
The angle of twist of gear A relative to gear C is
Explanation of Solution
Given information:
The allowable shear stress in the shaft is 75 MPa.
The motor supplies power of 8 kW.
Gear A and B withdraws power of 5 kW and 3 kW.
Shaft rotates at 300 rpm.
Calculation:
The expression for angular velocity of the shaft
Here, f is the frequency of shaft’s rotation.
Substitute
The expression for the power transmitted
Here, T is the applied torque and
Rearrange Equation to find the torque at A.
Here,
Substitute 5 kW for
Find the torque at C.
Here,
Substitute 8 kW for
Sketch the internal torque in the segment BC of the shaft as shown in Figure 1.
Sketch the internal torque in the segment AB of the shaft as shown in Figure 2.
Refer Figure 1 and Figure 2.
Segment BC of the shat is subjected to a greater internal torque of
The outer radius of the shaft is r.
The polar moment of inertia for a solid shaft of radius
The torsion formula for allowable maximum shear stress in the solid shaft
Here,
Substitute r for c and
Substitute 75 MPa for
The diameter of the shaft is twice the radius of the shaft. So the value of diameter is 26 mm.
Therefore, the required minimum diameter of the shaft is
Refer Figure 2.
The torque in the region AB of the shaft is
Refer Figure 1.
The torque in the region BC of the shaft is
Refer the properties of A992 steel.
The value of shear modulus of elasticity of A992 steel is 75 GPa.
The value of radius of the solid shaft is 13 mm.
Determine the angle of twist
Here, L is the length of the shaft and G is the shear modulus of elasticity of the material.
Rearrange Equation for angle of twist of gear A relative to gear C
Substitute
Substitute
Therefore, the angle of twist of gear A relative to gear C is
Want to see more full solutions like this?
Chapter 10 Solutions
Statics and Mechanics of Materials (5th Edition)
- The shaft is made of A992 steel and has an allowable shear stress of 95 MPa. When the shaft is rotating at 420 rpm, the motor supplies 11 kW of power, while gears A and B withdraw 7 kW and 4 kW, respectively. Determine the required minimum diameter of the shaft to the nearest millimeter. Also, find the rotation of gear A relative to C. (G=75 GPa) a. D=50.9589mm; 0.000004 rad b. D=50.9589mm; 0.0369 rad c. D=26mm; 0.000004 rad 300 mm d. D=26mm; 0.0369rad e. None of the above 300 mm Barrow_forwardRIO-1. The shaft is made af A992 steel and has an allowable shear stress of Tak - 75 MPa. when the shaft is rotating at 300 rpm, the motor supplies 8 kW af power, while gears A and B withdraw 5 kW and 3 kW, respectively. Determine the required minimum diameter of the shaft to the nearest millimeter. Alka, find the rotation of gear A relative to C. 300 mm S00arrow_forwardFI0-12. Aseriesofgearsare mountedonthe 40-mm-diameter steel shaft. Determine the angle of twist of gear E relative to gear A. Take G = 75 GPa. G00 N-m 900 N-m SO0 Nm zio mm 300 N-m 200 mm S00 N-m 200 mm 200 mmarrow_forward
- The hollow shaft has an outside diameter of 22mm and an inside diameter of 15mm. A torque of 1000N-m is applied in the end of the shift in the shown direction. Calculate the shear stress at point C .arrow_forwardIf the gears are subjected to the torques shown, determine the required diameter of the A-36 steel shaft to the nearest mm if tallow = 60 MPa.arrow_forwardThe solid steel shaft is supported by frictionless bearings in D and E. This system is connected to a motor that provides 5 kW of power to the shaft while rotating at w = 75 rpm. If A and B gears get 2 kW and 3 kW respectively, determine the minimum shaft diameter. w rotation speed and safety shear stress τem = 35MPa are known and given in the table with your names below.arrow_forward
- please be cleararrow_forwardThe shaft is made from a solid steel section AB and a tubular portion made of steel and having a brass core. If it is fixed to a rigid support at A, and a torque of T = 50 lb.ft is applied to it at C, determine the rotation angle that occurs at C relative to A and compute the maximum shear stress and maximum shear strain in the brass and steel. Take Gst = 11500 ksi, Gbr = 5600 Ksi. 3 ft 0.5 in. B 1 in. T = 50 lb•ftarrow_forward10-57. The tubular drive shaft for the propeller of a hovereraft is 6 m long. If the motor delivers 4 MW of power to the shaft when the propellers rotate at 25 rad's, determine the required inner diameter of the shaft if the outer diameter is 250 mm. What is the angle of twist of the shaft when it is operating? Take Ta-90 MPa and G = 75 GPa.arrow_forward
- The solid 35-mm-diameter shaft is used to transmit the torques applied to the gears. The shaft is made of steel A-36 with E = 200 GPa and G = 75 GPa a. Determine the absolute maximum shear stress on the shaft. b. Determine the angle of twist of the end B with respect to end A. c. The shaft is now change d to a hollowed shaft with an outside diameter of 40 mm. What inner diameter is required to resist the same torque with the same maximum shear stress?arrow_forwardThe composite shaft consists of a mid-section that includes the 1-in.-diameter solid shaft and a tube that is welded to the rigid flanges at A and B. Neglect the thickness of the flanges and determine the angle of twist of end C of the shaft relative to end D.The shaft is subjected to a torque of 800 lb.ft.The material is A-36 steel.arrow_forwardThe composite shaft consists of a mid-section that includes the 1-in. diameter solid shaft and a tube that is welded to the rigid flanges at A and B. Neglect the thickness of the flanges. The shaft is subjected to a torque of T=950 lb-ft. The material is A-38 steel, G = 11 x 10³ ksi- (Eigure 1) T 1 in. 3 in. 0.25 in. 0.75 ft. B 0.5 ft Determine the angle of twist of end C of the shaft relative to end D.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY