Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 10, Problem 136P
To determine
The boundary layer thickness at end of the plate.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Air flows at 15°C with a velocity of 12 m/s over a flat plate whose length is 80 cm. Using one-seventh power law of the turbulent flow, what is the boundary layer thickness at the end of the plate? (The kinematic viscosity of air is 1.470 × 10−5 m2/s.) (a) 1.54 cm (b) 1.89 cm (c) 2.16 cm (d ) 2.45 cm (e) 2.82 cm
C
Mott ."
cometer, which we can analyze later in Chap. 7. A small
ball of diameter D and density p, falls through a tube of test
liquid (p. µ). The fall velocity V is calculated by the time to
fall a measured distance. The formula for calculating the
viscosity of the fluid is
discusses a simple falling-ball vis-
(Po – p)gD²
18 V
This result is limited by the requirement that the Reynolds
number (pVD/u) be less than 1.0. Suppose a steel ball (SG =
7.87) of diameter 2.2 mm falls in SAE 25W oil (SG = 0.88)
at 20°C. The measured fall velocity is 8.4 cm/s. (a) What is
the viscosity of the oil, in kg/m-s? (b) Is the Reynolds num-
ber small enough for a valid estimate?
Chapter 10 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 10 - Discuss how nondimensalizsionalization of the...Ch. 10 - Prob. 2CPCh. 10 - Expalain the difference between an “exact”...Ch. 10 - Prob. 4CPCh. 10 - Prob. 5CPCh. 10 - Prob. 6CPCh. 10 - Prob. 7CPCh. 10 - A box fan sits on the floor of a very large room...Ch. 10 - Prob. 9PCh. 10 - Prob. 10P
Ch. 10 - Prob. 11PCh. 10 - In Example 9-18 we solved the Navier-Stekes...Ch. 10 - Prob. 13PCh. 10 - A flow field is simulated by a computational fluid...Ch. 10 - In Chap. 9(Example 9-15), we generated an “exact”...Ch. 10 - Prob. 16CPCh. 10 - Prob. 17CPCh. 10 - A person drops 3 aluminum balls of diameters 2 mm,...Ch. 10 - Prob. 19PCh. 10 - Prob. 20PCh. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - Prob. 23PCh. 10 - Prob. 24PCh. 10 - Prob. 25PCh. 10 - Prob. 26PCh. 10 - Prob. 27PCh. 10 - Consider again the slipper-pad bearing of Prob....Ch. 10 - Consider again the slipper the slipper-pad bearing...Ch. 10 - Prob. 30PCh. 10 - Prob. 31PCh. 10 - Prob. 32PCh. 10 - Prob. 33PCh. 10 - Prob. 34EPCh. 10 - Discuss what happens when oil temperature...Ch. 10 - Prob. 36PCh. 10 - Prob. 38PCh. 10 - Prob. 39CPCh. 10 - Prob. 40CPCh. 10 - Prob. 41PCh. 10 - Prob. 42PCh. 10 - Prob. 43PCh. 10 - Prob. 44PCh. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - Prob. 48PCh. 10 -
Ch. 10 - Prob. 50CPCh. 10 - Consider the flow field produced by a hair dayer...Ch. 10 - In an irrotational region of flow, the velocity...Ch. 10 -
Ch. 10 - Prob. 54CPCh. 10 - Prob. 55PCh. 10 - Prob. 56PCh. 10 - Consider the following steady, two-dimensional,...Ch. 10 - Prob. 58PCh. 10 - Consider the following steady, two-dimensional,...Ch. 10 - Prob. 60PCh. 10 - Consider a steady, two-dimensional,...Ch. 10 -
Ch. 10 - Prob. 63PCh. 10 - Prob. 64PCh. 10 - Prob. 65PCh. 10 - In an irrotational region of flow, we wtite the...Ch. 10 - Prob. 67PCh. 10 - Prob. 68PCh. 10 - Water at atmospheric pressure and temperature...Ch. 10 - The stream function for steady, incompressible,...Ch. 10 -
Ch. 10 - We usually think of boundary layers as occurring...Ch. 10 - Prob. 73CPCh. 10 - Prob. 74CPCh. 10 - Prob. 75CPCh. 10 - Prob. 76CPCh. 10 - Prob. 77CPCh. 10 - Prob. 78CPCh. 10 - Prob. 79CPCh. 10 - Prob. 80CPCh. 10 - Prob. 81CPCh. 10 -
Ch. 10 - On a hot day (T=30C) , a truck moves along the...Ch. 10 - A boat moves through water (T=40F) .18.0 mi/h. A...Ch. 10 - Air flows parallel to a speed limit sign along the...Ch. 10 - Air flows through the test section of a small wind...Ch. 10 - Prob. 87EPCh. 10 - Consider the Blasius solution for a laminar flat...Ch. 10 - Prob. 89PCh. 10 - A laminar flow wind tunnel has a test is 30cm in...Ch. 10 - Repeat the calculation of Prob. 10-90, except for...Ch. 10 - Prob. 92PCh. 10 - Prob. 93EPCh. 10 - Prob. 94EPCh. 10 - In order to avoid boundary laver interference,...Ch. 10 - The stramwise velocity component of steady,...Ch. 10 - For the linear approximation of Prob. 10-97, use...Ch. 10 - Prob. 99PCh. 10 - One dimension of a rectangular fiat place is twice...Ch. 10 - Prob. 101PCh. 10 - Prob. 102PCh. 10 - Prob. 103PCh. 10 - Static pressure P is measured at two locations...Ch. 10 - Prob. 105PCh. 10 - For each statement, choose whether the statement...Ch. 10 - Prob. 107PCh. 10 - Calculate the nine components of the viscous...Ch. 10 - In this chapter, we discuss the line vortex (Fig....Ch. 10 - Calculate the nine components of the viscous...Ch. 10 - Prob. 111PCh. 10 - The streamwise velocity component of a steady...Ch. 10 - For the sine wave approximation of Prob. 10-112,...Ch. 10 - Prob. 115PCh. 10 - Suppose the vertical pipe of prob. 10-115 is now...Ch. 10 - Which choice is not a scaling parameter used to o...Ch. 10 - Prob. 118PCh. 10 - Which dimensionless parameter does not appear m...Ch. 10 - Prob. 120PCh. 10 - Prob. 121PCh. 10 - Prob. 122PCh. 10 - Prob. 123PCh. 10 - Prob. 124PCh. 10 - Prob. 125PCh. 10 - Prob. 126PCh. 10 - Prob. 127PCh. 10 - Prob. 128PCh. 10 - Prob. 129PCh. 10 - Prob. 130PCh. 10 - Prob. 131PCh. 10 - Prob. 132PCh. 10 - Prob. 133PCh. 10 - Prob. 134PCh. 10 - Prob. 135PCh. 10 - Prob. 136PCh. 10 - Prob. 137PCh. 10 - Prob. 138P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A flat plate of length equal to 50 cm is parallel to a 25 m/s stream velocity. What is the shear stress, in Pa, at a section 40 cm away from the leading edge of the plate? The fluid is air with density equal to 1.2 kg/m³ and kinematic viscosity of 1.5 x 10-5 m²/s. Answer:arrow_forwardA 20degC water flows to 50cmx60cm flat plate with velocity of 3m/s . The flat plate surface temperature is maintained at 40deg C. The air flows parallel to the 50cm side of the plate. If the kinematic viscosity of water is 78x10-8 m2/s, at what length the flow become turbulent? Round your answer to 2 decimal places.arrow_forwardAir at 15°C flows at 10 m/s over a flat plate of length 3 m. Using one-seventh power law of the turbulent flow, what is the ratio of local skin friction coefficient for the turbulent and laminar flow cases? (The kinematic viscosity of air is 1.470 × 10−5 m2/s.) (a) 4.25 (b) 5.72 (c) 6.31 (d ) 7.29 (e) 8.54arrow_forward
- An infinite plate is moved over a second plate on a layer of liquid as shown. For small gap width, d, we assume a linear velocity distribution in the liquid. The liquid kinematic viscosity is 0.00739 cm²/s and its density is 880 kg/m³. Determine the shear stress on the upper plate, in N/m?. y U = 0.3 m/s d = 0.3 mmarrow_forwardA fluid with viscosity of u = 1.752 x 10-5kg/m. s and density of p = 1.2kg/m3 flows at U=1 m/s over a flat plate. The boundary layer displacement thickness %3D at the end of the plate is reported 0.01315 m. Assuming the flow is laminar, (a) Find the boundary layer thickness at the end of the plate. (b) Find the momentum thickness at that location. (c) Find the drag force of the plate.arrow_forward1. The Stokes-Oseen formula for drag force Fon a sphere of diameter D in a fluid stream of low velocity V, density p, and viscosity u is: 9T F = 3TuDV + 16PD? Is this formula dimensionally homogenous? 2. The efficiency n of a pump is defined as the (dimensionless) ratio of the power required to drive a pump: QAp input power Where Q is the volume rate of flow and Ap is the pressure rise produced by the pump. Suppose that a certain pump develops a pressure of Ibf/in? (1ft = 12 in) when its flow rate is 40 L/s (1L =0.001 m). If the input power is 16hp (1hp = 760 W), what is the efficiency?arrow_forward
- Question is a fluid mechanicsarrow_forwardReference 12 contains inviscid theory calculations for the upper and lower surface velocity distributions V(x) over an airfoil, where x is the chordwise coordinate. A typical re- sult for small angle of attack is as follows: xlc VIU„(upper) VIU„(lower) 0.0 0.0 0.0 0.025 0.97 0.82 0.05 1.23 0.98 0.1 1.28 1.05 1.13 0.2 1.29 0.3 1.29 1.16 0.4 1.24 1.16 0.6 1.14 1.08 0.8 0.99 0.95 1.0 0.82 0.82 Use these data, plus Bernoulli's equation, to estimate (a) the lift coefficient and (b) the angle of attack if the airfoil is symmetric.arrow_forwardEarrow_forward
- What are the physical and quantitative evidence of turbulence in fluid flow?arrow_forwardPipelines are cleaned by pushing through them a closefitting cylinder called a pig . The name comes from thesquealing noise it makes sliding along. Reference 50describes a new nontoxic pig, driven by compressed air, forcleaning cosmetic and beverage pipes. Suppose the pigdiameter is 5-15/16 in and its length 26 in. It cleans a6-in-diameter pipe at a speed of 1.2 m/s. If the clearance isfi lled with glycerin at 20 8 C, what pressure difference, inpascals, is needed to drive the pig? Assume a linear velocityprofi le in the oil and neglect air drag.arrow_forwardof the two liquid levels when the arms are open to the atmosphere. (c) Explain why the pressure difference is not constant across the meniscus of the liquid column in a capillary tube, and discuss the general shape of the meniscus. The surface tension and density of water are 7x 10 'Nm and 10'kgm respectively. in [W]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License