Applied Statics and Strength of Materials (6th Edition)
6th Edition
ISBN: 9780133840544
Author: George F. Limbrunner, Craig D'Allaird, Leonard Spiegel
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 10.15CP
Write a program that will allow a user to input the initial and final diameters and gage length for a tension test specimen along with a specified number of load-elongation combinations. The program should then calculate the stress and strain for each data set as well as the percent reduction in area. Use the program to check the calculations of Problem 10.4.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A tensile test was performed on a metal specimen with a diameter of
1/2 inch and a gage length (the length over which the elongation is meas-
ured) of 4 inches. The data were plotted on a load-displacement graph,
P vs. AL. A best-fit line was drawn through the points, and the slope of
the straight-line portion was calculated to be P/AL = 1392 kips/in. What
is the modulus of elasticity?
BI
Question
A cylindrical specimen of metal having a diameter of 12.88 mm and a gauge length
of 63.50 mm is tested using a tensile testing machine. The elongation measurement
are recorded in Table 3.
nPlot the stress-strain curve on the graph paper provided based on data in
Table 3
Based on the stress-strain curved plotted in (i):
Compute the modulus of elasticity
Determine the yield strength at a strain offset of 0.002.
Determine the tensile strength
Determine the ductility in percent elongation and percent area reduction
Table 3: Load-elongation readings for a metal specimen
Jadual 3: Bacaan beban pemanjangan untuk statu spesimen logam)
Load (N)
Elongation (mm)
1380
0.03
2780
0.06
5630
0.12
7430
0.2
8140
0.25
9870
0.64
12850
1.91
14100
3.18
14340
4.45
13830
5.72
12500
6.99
Fracture
The results of a tensile test are:
Diameter of the specimen
Gauge length
Load at limit of Proportionality
Extension at the limit of Proportionality
Maximum Load
: 10mm
:40 mm
: 70kN
:0.08mm.
:100 kN
Calculate stress at limit of proportionality and young's modulus.
Chapter 10 Solutions
Applied Statics and Strength of Materials (6th Edition)
Ch. 10 - A 916 - in. - diameter steel rod is tested in...Ch. 10 - A concrete cylinder 150 mm in diameter was tested...Ch. 10 - Prob. 10.3PCh. 10 - The data from the tension test of a steel specimen...Ch. 10 - An 18-in.-long titanium alloy rod is subjected to...Ch. 10 - ASTM A36 steel rods are used to support a balcony....Ch. 10 - A 450-mm-long AISI 1020 steel rod is subjected to...Ch. 10 - A tension member in a roof truss is composed of...Ch. 10 - A short, solid, compression member of circular...Ch. 10 - A main cable in a large bridge is designed for a...
Ch. 10 - Test results of a steel specimen indicated an...Ch. 10 - A concrete canoe in storage is supported by two...Ch. 10 - A load is applied to a rigid bar that is...Ch. 10 - Prob. 10.14CPCh. 10 - Write a program that will allow a user to input...Ch. 10 - A 12 - in. - diaiíct.cr structural nickel steel...Ch. 10 - Compute the modulus of elasticity of a copper...Ch. 10 - A concrete cylinder 6 in. in diameter was tested...Ch. 10 - An aluminum bar 2 in. by 12 - in. in cross section...Ch. 10 - During a tensile test of a steel specimen, the...Ch. 10 - A 12.5-mm-diameter steel rod was subjected to a...Ch. 10 - Prob. 10.22SPCh. 10 - A standard steel specimen having a diameter of...Ch. 10 - 10.24 A tension member in a structure is composed...Ch. 10 - A pair of wire cutters is designed to operate...Ch. 10 - Calculate the end bearing length required for a...Ch. 10 - Design a 3-m-long rod subjected to a tensile load...Ch. 10 - The collar bearing shown is subjected to a...Ch. 10 - A 10-ft-long steel member is subjected to a...Ch. 10 - Two steel bars A and B support a load P, as shown....Ch. 10 - Prob. 10.31SP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Using the tensile test simulation tool, a. generate the stress-strain curve for aluminum b. Indicate the following points in the stress-strain curve for aluminum and give the corresponding values: limit of proportionality elastic limit 0.2% offset yield stress (include the graph illustrating how this was determined) ultimate stress fracture stress c. Calculate modulus of elasticity. d. compare aluminum with nylon (include the related graph) and answer the following: Which has higher tensile strength? Provide the necessary values to support the answer. Which is stiffer? Support your answer with calculations.arrow_forwardNeeds Complete typed solution with 100 % accuracy.arrow_forwardNo wrong answer please , i could downvote The piece of suture is tested for its stress relaxation properties after cutting 3 cm long sample with a diameter of 1mm. The initial force recorded after stretching 0.1 cm between grips was 5 Newtons. Assume the suture material behave as if it has one relaxation time. The gage length was 1 cm. a. Calculate the initial stress. b. Calculate the initial strain. c. Calculate the modulus of elasticity of the suture if the initial stretching can be considered as linear and elastic. d. Calculate the relaxation time if the force recorded after 10 hours is 4 Newtons.arrow_forward
- The results of a tensile test are: Diameter of the specimen Gauge length Load at limit of Proportionality Extension at the limit of Proportionality Maximum Load : 10mm :40 mm :80kN : 0.06mm. :100 kN Calculate ultimate tensile stress and young's modulus.arrow_forwardStress Strain Diagram The Data shown in the table have been obtained from a tensile test conducted on a high-strength steel. The test specimen had a diameter of 0.505 inch and a gage length of 2.00 inch. Using software. plot the Stress-Strain Diagram for this steel and determine its: A= TTdT(050s A %3D 1. Proportional Limit, 2. Modulus of Elasticity, 3. Yield Strength (SY) at 0.2% Offset, 4. Ultimate Strength (Su), 5. Percent Elongation in 2.00 inch, 6. Percent Reduction in Area, 7. Present the results (for Steps 1-6) in a highly organized table. e Altac ie sheet (as problelle 4 A = 0.2.002 BEOINNING of the effort Elongation (in) Elongation (In) Load Load #: #3 (Ib) (Ib) 1 0.0170 15 12,300 0.0004 1,500 16 12,200 0.0200 0.0010 3. 3,100 17 12,000 0.0275 0.0016 4,700 18 13,000 0.0335 5. 6,300 0.0022 19 15,000 0.0400 0.0026 6. 8,000 20 16,200 0.055 0.0032 9,500 21 17,500 0.0680 0.0035 8. 11,000 22 18,800 0.1080 0.0041 11,800 23 19,600 0.1515 0.0051 24 20,100 0.2010 10 12,300 0.0071 25…arrow_forwardPlease show work for practice problem 12arrow_forward
- 3arrow_forwardA tensile test is performed on a metal specimen, and it is found that a true plastic strain of 0.20 is produced when a true stress of 575 MPa (83,500 psi) is applied; for the same metal, the value of K in Equation 6.19 is 860 MPa (125,000 psi). Calculate the true strain that results from the application of a true stress of 600 MPa (87,000 psi). Part 1 To solve this problem, calculate the value of n using the known relationship between true stress, true strain, the strain- hardening coefficient, and K (Equation 6.19). or = Ke, What is n? n = iarrow_forward10. The following results were obtained in a tensile test on a mild steel specimen of original diameter 20 mm and gauge length 40 mm. Load at limit of proportionality 80 kN Extension at 80 kN load 0.048 mm Load at yield point 85 kN Maximum load 150 kN When the two parts were fitted together after being broken, the length between gauge length was found to be 55.6 mm and the diameter at the neck was 15.8 mm. Calculate Young's modulus, yield stress, ultimate tensile stress, percentage elongation and percentage [Ans. 213 kN/mm2; 270 N/mm²; 478 N/mm²; 39%; 38%] reduction in area.arrow_forward
- answer must be in handwritten format or you can use Ms word but please do not typearrow_forwardSubmit correct and complete solutions. Please provide Explanation. Provide step-by-step detailed explanations.arrow_forwardA pine wood specimen was prepared with actual dimensions of 50 mm *50 mm * 250 mm and grain parallel to its length. The deformation was measured over a gauge length of 200 mm. The specimen was subjected to compression parallel to the grain to failure. The load–deformation results are as shown in Table P10.25. a. Using a computer spreadsheet program, plot the stress–strainrelationship.b. Calculate the modulus of elasticity.c. What is the failure stress?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
An Introduction to Stress and Strain; Author: The Efficient Engineer;https://www.youtube.com/watch?v=aQf6Q8t1FQE;License: Standard YouTube License, CC-BY