COLLEGE PHYSICS (LL)W/MOD.MASTERINGPHYS
4th Edition
ISBN: 9780135160121
Author: Knight
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 73GP
Whale sharks swim forward while ascending or descending. They swim along a straight-line path at a shallow angle as they move from the surface to deep water or from the depths to the surface. In one recorded dive, a shark started 50 m below the surface and swam at 0.85 m/s along a path tipped at a 13° angle above the horizontal until reaching the surface.
- a. What was the horizontal distance between the shark's starting and ending positions?
- b. What was the total distance that the shark swam?
- c. How much time did this motion take?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Whale sharks swim forward while ascending or descending. They swim along a straight-line path at a
shallow angle as they move from the surface to deep water or from the depths to the surface. In one
recorded dive, a shark started 50 m below the surface and swam at 0.85 m/s along a path tipped at a
13° angle above the horizontal until reaching the surface.
a. What was the horizontal distance between the shark's starting and ending positions?
A cat jumps upward from a bookcase located 120 cm above the ground, and is ejected with a speed of 4 m/s and an angle of 35° with the horizontal.a. Draw the trajectory and initial velocity of the cat with its components.b. Write the equations of motion x(t) and y(t) of the cat.c. What maximum height does he reach during his jump?d. How long does it stay in the air?
A plane takes off and flies upwards at an angle of 24 degrees with a constant speed of 268 m/s. While the plane is flying upwards, a piece of the engine falls off when the plane reaches a height of 880 m.
a. How long does it take the piece of the engine to reach the ground? Give answer in seconds.
b. What so the horizontal distance covered by the piece of the engine before it lands? Give answer in meters.
Chapter 1 Solutions
COLLEGE PHYSICS (LL)W/MOD.MASTERINGPHYS
Ch. 1 - A softball player slides into second base. Use the...Ch. 1 - A car travels to the left at a steady speed for a...Ch. 1 - A ball is dropped from the roof of a tall building...Ch. 1 - Prob. 5CQCh. 1 - Give an example of a trip you might take in your...Ch. 1 - Write a sentence or two describing the difference...Ch. 1 - The motion of a skateboard along a horizontal axis...Ch. 1 - You are standing on a straight stretch of road and...Ch. 1 - Two friends watch a jogger complete a 400 m lap...Ch. 1 - A softball player hits the ball and starts running...
Ch. 1 - A child is sledding on a smooth, level patch of...Ch. 1 - A skydiver jumps out of an airplane. Her speed...Ch. 1 - Your roommate drops a tennis ball from a...Ch. 1 - A car is driving north at a steady speed. It makes...Ch. 1 - Prob. 16CQCh. 1 - Prob. 17CQCh. 1 - A student walks 1.0 mi west and then 1.0 mi north....Ch. 1 - You throw a rock upward. The rock is moving...Ch. 1 - Which of the following motions could be described...Ch. 1 - Which of the following motions is described by the...Ch. 1 - A bird flies 3.0 km due west and then 2.0 km due...Ch. 1 - Weddell seals make holes in sea ice so that they...Ch. 1 - A bird flies 3.0 km due west and then 2.0 km due...Ch. 1 - Prob. 25MCQCh. 1 - Compute 3.24 m + 0.532 m to the correct number of...Ch. 1 - Prob. 27MCQCh. 1 - The earth formed 4.57 109 years ago. What is this...Ch. 1 - Prob. 29MCQCh. 1 - A car skids to a halt to avoid hitting an object...Ch. 1 - A man rides a bike along a straight road for 5...Ch. 1 - Prob. 3PCh. 1 - Figure P1.4 shows Sue along the straight-line path...Ch. 1 - Prob. 5PCh. 1 - Prob. 6PCh. 1 - Keira starts at position x = 23 m along a...Ch. 1 - A car travels along a straight east-west road. A...Ch. 1 - Foraging bees often move in straight lines away...Ch. 1 - A security guard walks at a steady pace, traveling...Ch. 1 - List the following items in order of decreasing...Ch. 1 - Prob. 12PCh. 1 - It takes Harry 35 s to walk from x = 12 m to x = ...Ch. 1 - A dog trots from x = 12 m to x = 3 m in 10 s....Ch. 1 - Prob. 15PCh. 1 - Convert the following to SI units: a. 9.12 s b....Ch. 1 - Convert the following to SI units: a. 8.0 in b. 66...Ch. 1 - Convert the following to SI units: a. 1.0 hour b....Ch. 1 - How many significant figures does each of the...Ch. 1 - How many significant figures does each of the...Ch. 1 - Compute the following numbers to three significant...Ch. 1 - lf you make multiple measurements of your height,...Ch. 1 - Prob. 23PCh. 1 - Blades of grass grow from the bottom, so, as...Ch. 1 - Estimate the average speed, in m/s, with which the...Ch. 1 - Loveland, Colorado, is 18 km due south of Fort...Ch. 1 - A city has streets laid out in a square grid, with...Ch. 1 - Joe and Max shake hands and say goodbye. Joe walks...Ch. 1 - Prob. 29PCh. 1 - A butterfly flies from the top of a tree in the...Ch. 1 - A garden has a circular path of radius 50 m. John...Ch. 1 - Prob. 32PCh. 1 - Migrating geese tend to travel at approximately...Ch. 1 - A circular test track for cars in England has a...Ch. 1 - Black vultures excel at gliding flight; they can...Ch. 1 - Prob. 36PCh. 1 - Prob. 37PCh. 1 - A hiker is climbing a steep 10 slope. Her...Ch. 1 - A ball on a porch rolls 60 cm to the porch's edge,...Ch. 1 - A kicker punts a football from the very center of...Ch. 1 - A squirrel completing a short glide travels in a...Ch. 1 - A squirrel in a typical long glide covers a...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Prob. 45GPCh. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Prob. 50GPCh. 1 - Prob. 51GPCh. 1 - Prob. 52GPCh. 1 - Prob. 53GPCh. 1 - Prob. 54GPCh. 1 - Prob. 55GPCh. 1 - Prob. 56GPCh. 1 - Prob. 57GPCh. 1 - Prob. 58GPCh. 1 - Prob. 59GPCh. 1 - The end of Hubbard Glacier in Alaska advances by...Ch. 1 - The earth completes a circular orbit around the...Ch. 1 - Prob. 62GPCh. 1 - Prob. 63GPCh. 1 - Shannon decides to check the accuracy of her...Ch. 1 - The Nardo ring is a circular test track for cars....Ch. 1 - Motor neurons in mammals transmit signals from the...Ch. 1 - Satellite data taken several times per hour on a...Ch. 1 - The bacterium Escherichia coli (or E. coli) is a...Ch. 1 - The bacterium Escherichia coli (or E. coli) is a...Ch. 1 - The sun is 30 above the horizon. It makes a...Ch. 1 - Weddell seals foraging in open water dive toward...Ch. 1 - Prob. 72GPCh. 1 - Whale sharks swim forward while ascending or...Ch. 1 - Starting from its nest, an eagle flies at constant...Ch. 1 - John walks 1.00 km north, then turns right and...Ch. 1 - The images of trees in Figure P1.68 come from a...Ch. 1 - The images of trees in Figure P1.68 come from a...Ch. 1 - The images of trees in Figure P1.68 come from a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Planetary Changes. Write two or three paragraphs explaining why each of the planets described below would or wo...
Life in the Universe (4th Edition)
The setup depicted in Figure 4.6 is used in a diffraction experiment using X-rays of 0.26 nm wavelength. Constr...
Modern Physics
* A turntable whose rotational inertia is 1.0103kgm2 rotates on a frictionless air cushion at a rotational spee...
College Physics
The specific heat capacity of Albertsons Rotini Tricolore is approximately 1.8J/gC. Suppose you toss 340 g of t...
An Introduction to Thermal Physics
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A student stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of vi= 18.0 m/s. The cliff is h = 50.0 m above a body of water as shown in Figure P3.19. (a) What are the coordinates of the initial position of the stone? (b) What are the components of the initial velocity of the stone? (c) What is the appropriate analysis model for the vertical motion of the stone? (d) What is the appropriate analysis model for the horizontal motion of the stone? (e) Write symbolic equations for the x and y components of the velocity of the stone as a function of time. (f) Write symbolic equations for the position of the stone as a function of time. (g) How long after being released does the stone strike the water below the cliff? (h) With what speed and angle of impact does the stone land?arrow_forwardA train leaving Albuquerque travels 293 miles, due east, to Amarillo. The train spends a couple of days at the station in Amarillo and then heads back west 107 miles where it stops in Tucumcari. Suppose the positive x direction points to the east and Albuquerque is at the origin of this axis. a. What is the total distance traveled by the train from Albuquerque to Tucumcari? b. What is the displacement of the train for the entire journey? Give both answers in appropriate SI units.arrow_forwardFigure OQ4.1 shows a bird's-eye view of a car going around a highway curve. As the car moves from point 1 to point 2, its speed doubles. Which of the vectors (a) through (e) shows the direction of the cars average acceleration between these two points?arrow_forward
- Figure P3.40 shows a map of Grand Canyon National Park in Arizona. You need a ruler and protractor for this problem, a. Paul hikes from Cape Royale to Point Sublime. Find the magnitude and direction of his displacement, ignoring any difference in altitude between the two points, b. Lil hikes from Point Sublime to Cape Royale. Find the magnitude and direction of her displacement. Compare your answer with that of part (a).arrow_forwardTwo birds begin next to each other and then fly through the air at the same elevation above level ground at 22.5 m/s. One flies northeast, and the other flies northwest. After flying for 10.5 s, what is the distance between them? Ignore the curvature of the Earth.arrow_forward(a) A jet airplane flying from Darwin, Australia, has an air speed of 260 m/s in a direction 5.0° south of west. It is in the jet stream, which is blowing at 35.0 m/s in a direction 15° south of east. What is the velocity of the airplane relative to the Earth? (b) Discuss whether your answers are consistent with your expectations for the effect of the wind on the plane's path.arrow_forward
- (a) A daredevil is attempting to jump his motorcycle over a line of buses parked end to end by driving up a 32° ramp at a speed of 40.0 m/s (144 km/h). How many buses can he clear if the top of the takeoff ramp is at the same height as the bus tops and the buses are 20.0 m long? (b) Discuss what your answer implies about the margin of error in this act—that is, consider how much greater the range is than the horizontal distance he must travel to miss the end of the last bus. (Neglect air resistance.)arrow_forwardA fastball pitcher can throw a baseball at a speed of 40 m/s (90 mi/b). (a) Assuming the pitcher can release the ball 16.7 m from home plate so the ball is moving horizontally, how long does it take the ball to reach bone plate? (b) How far does the ball drop between the pitcher’s hand and home plate?arrow_forwardProblems 74 and 75 are paired. 74. N A classroom clock has a small magnifying glass embedded near the end of the minute hand. The magnifying glass may be modeled as a particle. Class begins at 7:55 and ends at 8:50. The length of the minute hand is 0.300 m. a. Find the average velocity of the magnifying glass at the end of the minute hand using the coordinate system shown in Figure P3.74. Give your answer in component form. b. Find the magnitude and direction of the average velocity. c. Find the average speed and in the CHECK and THINK step, compare to the average velocity.arrow_forward
- A During the battle of Bunker Hill, Colonel William Prescott ordered the American Army to bombard the British Army camped near Boston. The projectiles had an initial velocity of v measured in meters per second at an angle above the horizon and an initial position that was h higher than where they hit the ground. How far did the projectiles move horizontally before they hit the ground? Ignore air resistance.arrow_forwardA rugby player passes the ball 7.00 m across the field, where it is caught at the same height as it left his hand. (a) At what angle was the ball thrown if its initial speed was 12.0 m/s, assuming that the smaller of the possible angles was used? (b) What other angle gives the same range, and why would it not be used? (c) How long did this pass take?arrow_forwardA river is moving east at 4 m/s. A boat starts from the dock heading 30 north of west at 7 m/s. If the river is 1800 m wide, (a) what is the velocity of the boat with respect to Earth and (b) how long does it take the boat to cross the river?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY