Concept explainers
The final location of the car..
Answer to Problem 59P
The final location of the car relative to the origin is
Explanation of Solution
Write the first displacement of the car in vector notation by considering East as positive x coordinate and North as positive y coordinate.
Here,
Write the second displacement of the car in vector notation.
Here,
Write the expression to find the distance of the car relative to origin.
Here,
Write the net displacement along x and y axis.
Write the expression to find the angle.
Conclusion:
Substitute
Substitute
Substitute
Substitute
Therefore, the final location of the car relative to the origin is
Want to see more full solutions like this?
Chapter 1 Solutions
Bundle: College Physics: Reasoning And Relationships, 2nd + Webassign Printed Access Card For Giordano's College Physics, Volume 1, 2nd Edition, Multi-term
- In an attempt to escape a desert island, a castaway builds a raft and sets out to sea. The wind shifts a great deal during the day and he is blown along the following directions: 2.50 km and 45.0 north of west, then 4.70 km and 60.0 south of east, then 1.30 km and 25.0 south of west, then 5.10 km straight east, then 1.70 km and 5.00 east of north, then 7.20 km and 55.0 south of west, and finally 2.80 km and 10.0 north of east. Use a graphical method to find the castaway’s final position relative to the island.arrow_forwardA delivery man starts at the post office, chives 40 km north, then 20 km west, then 60 km northeast, and finally 50 km north to stop for lunch. Use a graphical method to find his net displacement vector.arrow_forwardFind the horizontal and vertical components of the 100-m displacement of a superhero who flies from the top of a tall building following the path shown in Figure P1.40. Figure P1.40arrow_forward
- For the two vectors find A − B and |A – B| component of B along A angle between A and B A × B (A − B) × (A + B)arrow_forwardA skater glides along a circular path of radius 5.00 m in clockwise direction. ‘When he coasts around one- half of the circle, starting from the west point, find (a) the magnitude of his displacement vector and (b) how far he actually skated. (c) What is the magnitude of his displacement vector when he skates all the way around the circle and comes back to the west point?arrow_forwardA hiker walks from (x1, y1) = (4.00 km. 3.00 km) to (x2, y2) = (3.00 km, 6.00 km), (a) What distance has the traveled? (b) The hiker desires to return to his starting point. In what direction should he go? (Give the angle with respect to due cast.) (See Sections 3.2 and 3.3.)arrow_forward
- Vector B is 5.0 cm long and vector A is 4.0 cm long. Find the angle between these two vectors when |A+B|=3.0cm and |AB|=3.0cm .arrow_forwardVector A has x and y components of 8.70 cm and 15.0 cm, respectively; vector B has x and y components of 13.2 cm and 6.60 cm, respectively. If AB+3C=0, what are the components of C?arrow_forwardVector B has x, y, and z components of 4.00, 6.00, and 3.00 units, respectively. Calculate (a) the magnitude of B and (b) the angle that B makes with each coordinate axis.arrow_forward
- What is the y component of the vector (3i 8k) m/s? (a) 3 m/s (b) 8 m/s (c) 0 (d) 8 m/s (e) none of those answersarrow_forwardThree displacement vectors of a croquet ball are shown in Figure P1.44, where |A|=20.0units, |B|=40.0units, and |C|=30.0units. Find (a) the resultant in unit-vector notation and (b) the magnitude and direction of the resultant displacement. Figure P1.44arrow_forwardA vector points from the origin into the second quadrant of the xy plane. What can you conclude about its components? (a) Both components are positive. (b) The x component is positive, and the y component is negative. (c) The x component is negative, and the y component is positive. (d) Both components are negative. (e) More than one answer is possible.arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning