Computer Science: An Overview (12th Edition)
Computer Science: An Overview (12th Edition)
12th Edition
ISBN: 9780133760064
Author: Glenn Brookshear, Dennis Brylow
Publisher: PEARSON
Expert Solution & Answer
Book Icon
Chapter 1, Problem 42CRP

a.

Explanation of Solution

Determine the information about the common values:

The values of the bit pattern are 01011 and 11011. One of the bits represents the values in excess 16 notation and another is the same value in two’s complement notation.

  • Consider the two values are in excess 16 notation, to find out the value in base ten.
  • Convert the 16 notation into its equivalent base 10 representation.
  • First covert the bit pattern 01011 to base ten representations, multiply every bit of the excess 16 representation by power of two from right to left as shown below:

0×24+1×23+0×22+1×21+1×20 =0+8+0+2+1= 11

  • Subtract 16 from the result to find the equivalent value. The excess 16 notation is 1116=5. Thus, 01011=(5)10
  • The second bit pattern be 11011. The conversion of excess 16 notation the equivalent base 10 representation is shown below:

1×24+1×23+0×22+1×21+1×20 =16+8+0+2+1= 27

  • The excess 16 notation is 2716=11. Thus, 11011=(11)10
  • Thus, 01011=(5)10 and 11011=(11)10

b.

Explanation of Solution

The two bit pattern is 01011 and 11011. Both the system uses the same bit pattern length.

The relation between the patterns representing a value stored in two’s complement notation with the same value stored in excess notation:

  • From the given two bit pattern it can be observed that the all the bits are same expect the high order bit which is 0 in the first bit pattern and 1 in the second pattern...

Blurred answer
Students have asked these similar questions
One of the bit patterns 01011 and 11011 represents a value stored in excess 16 notation and the other represents the same value stored in two's complement notation. a. What can be determined about this common value? b. What is the relationship between a pattern representing a value stored in two's complement notation and the pattern representing the same value stored in excess notation when both systems use the same bit pattern length?
Number representation and overflow] Consider the following 8 bit binary number numbers below: A = 11010111 B = 10011101 a. What is the value of A in decimal if we interpreted A as an unsigned number? b. What is the value of B in decimal if we interpreted B as a two's complement number? c. In two's complement representations for both A and B: i. What is the value of (A + B)? Indicate if there is an overflow? ii. What is the value of (B - A)? Indicate if there is an overflow?
Show Steps Please 17. Show how floating-point value 12.5 would be stored using IEEE-754 single precision (be sure to indicate the sign bit, the exponent, and the significand fields):  18. If the floating-point number representation on a certain system has a sign bit, a 3-bit exponent and a 4-bit significand: a) What is the largest positive and the smallest positive number that can be stored on this?system if the storage is normalized? (Assume no bits are implied, there is no biasing, exponents use two's complement notation, and exponents of all zeros and all ones are allowed.)  b) What bias should be used in the exponent if we prefer all exponents to be non-negative?  c) Why would you choose this bias? 19. Assume we are using the simple model for floating-point representation as given in this book (the representation uses a 14-bit format, 5 bits for the exponent with a bias of 15, a normalized mantissa of 8 bits, and a single sign bit for the number):  a) Show how the computer would…

Chapter 1 Solutions

Computer Science: An Overview (12th Edition)

Ch. 1.3 - Prob. 2QECh. 1.3 - Prob. 3QECh. 1.3 - Prob. 4QECh. 1.3 - Prob. 5QECh. 1.3 - Prob. 6QECh. 1.4 - Here is a message encoded in ASCII using 8 bits...Ch. 1.4 - In the ASCII code, what is the relationship...Ch. 1.4 - Prob. 3QECh. 1.4 - Prob. 4QECh. 1.4 - Convert each of the following binary...Ch. 1.4 - Prob. 6QECh. 1.4 - What is the largest numeric value that could be...Ch. 1.4 - An alternative to hexadecimal notation for...Ch. 1.4 - What is an advantage of representing images via...Ch. 1.4 - Prob. 10QECh. 1.5 - Convert each of the following binary...Ch. 1.5 - Convert each of the following base ten...Ch. 1.5 - Convert each of the following binary...Ch. 1.5 - Express the following values in binary notation:...Ch. 1.5 - Perform the following additions in binary...Ch. 1.6 - Convert each of the following twos complement...Ch. 1.6 - Prob. 2QECh. 1.6 - Suppose the following bit patterns represent...Ch. 1.6 - Suppose a machine stores numbers in twos...Ch. 1.6 - In the following problems, each bit pattern...Ch. 1.6 - Prob. 6QECh. 1.6 - Prob. 7QECh. 1.6 - Prob. 8QECh. 1.6 - Prob. 9QECh. 1.6 - Prob. 10QECh. 1.6 - Prob. 11QECh. 1.7 - Prob. 1QECh. 1.7 - Prob. 3QECh. 1.7 - Prob. 4QECh. 1.8 - What makes Python an interpreted programming...Ch. 1.8 - Write Python statements that print the following:...Ch. 1.8 - Write Python statements to make the following...Ch. 1.8 - Write a Python statement that given an existing...Ch. 1.9 - Prob. 1QECh. 1.9 - Prob. 2QECh. 1.9 - Prob. 3QECh. 1.9 - Prob. 4QECh. 1.9 - Prob. 5QECh. 1.9 - Prob. 6QECh. 1.9 - Prob. 7QECh. 1.10 - Prob. 1QECh. 1.10 - Could errors have occurred in a byte from Question...Ch. 1.10 - Prob. 3QECh. 1.10 - Prob. 4QECh. 1.10 - Prob. 5QECh. 1.10 - Prob. 6QECh. 1 - Determine the output of each of the following...Ch. 1 - a. What Boolean operation does the circuit...Ch. 1 - a. If we were to purchase a flip-flop circuit from...Ch. 1 - Assume that both of the inputs in the following...Ch. 1 - The following table represents the addresses and...Ch. 1 - How many cells can be in a computers main memory...Ch. 1 - Prob. 7CRPCh. 1 - Prob. 8CRPCh. 1 - Prob. 9CRPCh. 1 - Prob. 10CRPCh. 1 - Suppose a picture is represented on a display...Ch. 1 - Prob. 12CRPCh. 1 - Prob. 13CRPCh. 1 - If each sector on a magnetic disk contains 1024...Ch. 1 - How many bytes of storage space would be required...Ch. 1 - Prob. 16CRPCh. 1 - Prob. 17CRPCh. 1 - Suppose a typist could type 60 words per minute...Ch. 1 - Prob. 19CRPCh. 1 - Prob. 20CRPCh. 1 - Prob. 21CRPCh. 1 - Prob. 22CRPCh. 1 - Prob. 23CRPCh. 1 - Prob. 24CRPCh. 1 - Prob. 25CRPCh. 1 - Prob. 26CRPCh. 1 - Prob. 27CRPCh. 1 - Prob. 28CRPCh. 1 - Prob. 29CRPCh. 1 - Prob. 30CRPCh. 1 - Prob. 31CRPCh. 1 - Prob. 32CRPCh. 1 - Prob. 33CRPCh. 1 - Prob. 34CRPCh. 1 - Prob. 35CRPCh. 1 - Prob. 36CRPCh. 1 - Prob. 37CRPCh. 1 - Prob. 38CRPCh. 1 - Prob. 39CRPCh. 1 - Prob. 40CRPCh. 1 - Prob. 41CRPCh. 1 - Prob. 42CRPCh. 1 - Prob. 43CRPCh. 1 - Prob. 44CRPCh. 1 - Prob. 45CRPCh. 1 - What would be the hexadecimal representation of...Ch. 1 - Prob. 47CRPCh. 1 - Prob. 48CRPCh. 1 - Prob. 49CRPCh. 1 - Prob. 50CRPCh. 1 - Prob. 51CRPCh. 1 - Prob. 52CRPCh. 1 - Prob. 53CRPCh. 1 - Prob. 54CRPCh. 1 - Prob. 55CRPCh. 1 - Prob. 56CRPCh. 1 - Prob. 57CRPCh. 1 - Prob. 58CRPCh. 1 - Write and test a Python script that, given a...Ch. 1 - Prob. 61CRPCh. 1 - Prob. 2SICh. 1 - Prob. 3SICh. 1 - Prob. 4SICh. 1 - Prob. 5SICh. 1 - Prob. 6SICh. 1 - Prob. 7SI
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Systems Architecture
    Computer Science
    ISBN:9781305080195
    Author:Stephen D. Burd
    Publisher:Cengage Learning
Text book image
Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning