21st Century Astronomy
6th Edition
ISBN: 9780393428063
Author: Kay
Publisher: NORTON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1, Problem 30QP
To determine
The reason for current theory to support the statement that we are made of stardust.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I attempted to answer this question and I'm not sure what I am doing wrong. My formula says A.S. = 206265 (separation/distance from observer)
I know to convert to the same units, so I ended up with 80 Million Km being 8 x 10 ^ -6 LY
Could you please explain each step especially for the part that I got wrong for both A and B?
True or False
8. Almost all stars are in binary systems. The book says: "So far you have been considering the deaths of stars as if they were all single objects that never interact, but more than half of all stars are members of binary star systems."From this, I would not necessarily say that almost all stars are in binary systems based on this alone, but some other information I am finding says up to 85%. However, the numbers seem to be all over the map outside the course material, and I can not find a solid figure in it from what I have looked at.
If it helps, Stars and Galaxies, 10th Edition by Seeds and Beckman is my reference material.
Imagine that you are observing the light from a distant star that is located in a galaxy 100 million lightyears
away from you. By analysis of the starlight received, you are able to tell that the image we see is of a 10-
million-year-old star. You are also able to predict that the star will have a total lifetime of 50 million years, at
which point it will end in a catastrophic supernova.
a) How old does the star appear to be to us here on Earth now?
b) How long will it be before we receive the light from the supernova event?
c) Has the supernova already occurred? If so, when did it occur?
Chapter 1 Solutions
21st Century Astronomy
Ch. 1.1 - Prob. 1.1CYUCh. 1.2 - Prob. 1.2CYUCh. 1.3 - Prob. 1.3CYUCh. 1 - Prob. 1QPCh. 1 - Prob. 2QPCh. 1 - Prob. 3QPCh. 1 - Prob. 4QPCh. 1 - Prob. 5QPCh. 1 - Prob. 6QPCh. 1 - Prob. 7QP
Ch. 1 - Prob. 8QPCh. 1 - Prob. 9QPCh. 1 - Prob. 10QPCh. 1 - Prob. 11QPCh. 1 - Prob. 12QPCh. 1 - Prob. 13QPCh. 1 - Prob. 14QPCh. 1 - Prob. 15QPCh. 1 - Prob. 16QPCh. 1 - Prob. 17QPCh. 1 - Prob. 18QPCh. 1 - Prob. 19QPCh. 1 - Prob. 20QPCh. 1 - Prob. 21QPCh. 1 - Prob. 22QPCh. 1 - Prob. 23QPCh. 1 - Prob. 24QPCh. 1 - Prob. 25QPCh. 1 - Prob. 26QPCh. 1 - Prob. 27QPCh. 1 - Prob. 28QPCh. 1 - Prob. 29QPCh. 1 - Prob. 30QPCh. 1 - Prob. 31QPCh. 1 - Prob. 32QPCh. 1 - Prob. 33QPCh. 1 - Prob. 34QPCh. 1 - Prob. 35QPCh. 1 - Prob. 36QPCh. 1 - Prob. 37QPCh. 1 - Prob. 38QPCh. 1 - Prob. 39QPCh. 1 - Prob. 40QPCh. 1 - Prob. 41QPCh. 1 - Prob. 42QPCh. 1 - Prob. 43QPCh. 1 - Prob. 44QPCh. 1 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The best parallaxes obtained with Hipparcos have an accuracy of 0.001 arcsec. If you want to measure the distance to a star with an accuracy of 10%, its parallax must be 10 times larger than the typical error. How far away can you obtain a distance that is accurate to 10% with Hipparcos data? The disk of our Galaxy is 100,000 light-years in diameter. What fraction of the diameter of the Galaxy’s disk is the distance for which we can measure accurate parallaxes?arrow_forwardAnother explanation for the Universe is the Steady State Hypothesis. The Steady State Hypothesis says that the Universe has always existed and is infinite in extent. Which of the following supports the Big Bang Theory and which supports the Steady State Model. (Select B-Big Bang Theory, S-Steady State Model, If the first is B and the rest S, enter BSSSSS). A) An observation that some globular clusters show M-type stars that have evolved off the main sequence. B) The measurement of redshifts that show galaxies appear to be moving away from each other and the Universe is expanding. C) A measurement that shows the density of the Universe is close to the critical density. D) The measurement of the microwave background radiation. E) Observing that galaxies at very large distances look identical to those in the nearby universe.arrow_forward1.2 1.0 0.8 0.6 Cosmic background data from COBE 0.4 0.2 0.0 0.5 10 Wavelength A in mm c) Background (CMB) undertaken by the COBE satellite. Use this diagram to estimate the current temperature of the CMB. Based on your estimate, what would the temperature of the CMB have been at a redshift of z = 5000? The left hand diagram above shows the results from observations of the Cosmic Microwave Radiated Intensity per Unit Wavelength (16° Watts/m per mm)arrow_forward
- The figure below shows the spectra of two galaxies A and B.arrow_forwardPlease tell me correct option with proper explanation.arrow_forwardThe figure below shows the spectra of two galaxies A and B. Please can i get help with this questions below: 1. Which of these galaxies has ongoing star formation? How can you tell?2. One of these galaxies has Hubble type E3 while the other is SBb. Which is which? What does the 3 inE3 tell you about the galaxy? What does the SB in SBb tell you about the galaxy?3. What effects would dust have on the two spectra?4. Which galaxy would you expect to have more far-infrared emission? Explarrow_forward
- Let us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer)arrow_forward1) There is a one earth mass planet orbiting an M5 star of 0.2 Mo and luminosity 1x10-2 Lo- A) How close does the planet need to be to the star in order to receive the same amount of energy as the Earth receives from the sun? B) What is the orbital period of the planet at this distance? C) What is the magnitude of the radial velocity perturbation of the star? D) If the system is edge on to us, would we be likely to detect this planet using the radial velocity method?arrow_forwardLet us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer) Question 4 of 7 A Moving to another question will save this response. 1 6:59 & backsarrow_forward
- helparrow_forwardIndicate whether the following statements are true or false. (Select T-True, F-False. If the first is T and the rest F, enter TFFFFF). A) If we find an O type star in our galaxy, it must be in the disk. B) The nearest large spiral Galaxy, similar in size to the Milky Way, is the Andromeda Galaxy (M31). It is located about 2 million light years from Earth. C) The disk of the Milky Way galaxy is about 100,000 light years in diameter. D) On very large scales, matter in the Universe is distributed in clumps and voids. E) Distances to most stars in the Milky Way are measured by parallax. F) RR Lyrae and Cepheid variable stars are used to measure the distance to nearby galaxies.arrow_forwardWas the Big Bang an explosion? Explain your answer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY