Bundle: Steel Design, Loose-leaf Version, 6th + Mindtap Engineering, 1 Term (6 Months) Printed Access Card
Bundle: Steel Design, Loose-leaf Version, 6th + Mindtap Engineering, 1 Term (6 Months) Printed Access Card
6th Edition
ISBN: 9781337761505
Author: William T. Segui
Publisher: Cengage Learning
Question
Book Icon
Chapter 1, Problem 1.5.1P
To determine

(a)

The ultimate tensile stress of metal specimen.

Expert Solution
Check Mark

Answer to Problem 1.5.1P

120ksi.

Explanation of Solution

Given:

The diameter of metal specimen is 0.550inch.

The load at facture is 28,500pounds.

Concept Used:

Write the equation to calculate the ultimate tensile stress.

f=PA ...... (I)

Here, ultimate tensile stress is f, fractured load is P, and the cross-sectional area is A.

Calculation:

Calculate the cross-sectional area of specimen.

A=π4×d2 ...... (II)

Here, diameter of the specimen is d.

Substitute 0.550inch for d in the Equation (II).

A=π4×(0.550inch)2=0.95033inch24=0.2375inch2

Calculate the ultimate tensile stress.

Substitute 28,500pounds for P and 0.2375inch2 for A in the Equation (I).

f=28,500pounds0.2375inch2×(1klb1000pounds)=28.5klb0.2375inch2=120klb/inch2×(1ksi1klb/inch2)=120ksi

Conclusion:

Thus, the ultimate tensile stress on the metal specimen is 120ksi.

To determine

(b)

The elongation of the metal specimen.

Expert Solution
Check Mark

Answer to Problem 1.5.1P

13.3%.

Explanation of Solution

Given:

The original gage length is 2.03inches.

The change in gage length is 2.3inches.

Concept Used:

Write the equation to calculate the elongation.

e=LfL0L0×100 ...... (III)

Here, the elongation is e, the length of the specimen at fracture is Lf, and the original length is L0.

Calculation:

Calculate the elongation of the metal specimen.

Substitute 2.03inches for L0 and 2.3inches for Lf in Equation (III).

e=[(2.3inches)(2.03inches)(2.03inches)]×100=0.1330×100=13.3%

Conclusion:

Thus, the elongation of the metal specimen is 13.3%.

To determine

(c)

The reduction in the cross-sectional area of the metal specimen.

Expert Solution
Check Mark

Answer to Problem 1.5.1P

38.86%.

Explanation of Solution

Given:

The original diameter of metal specimen is 0.550inch.

The diameter after fracture load is 0.430inch.

Concept Used:

Write the equation to calculate reduction in cross-sectional area.

R=A0AfA0×100 ...... (IV)

Here, the reduction in cross-sectional area is R, original cross-sectional area is A0, and the cross-sectional area after fracture load is Af.

Calculation:

Calculate the cross-sectional area after fracture load.

Substitute 0.430inch for d in the Equation (II).

A=π4×(0.430inch)2=0.5808inch24=0.1452inch2

Calculate the reduction in the cross-sectional area.

Substitute 0.1452inch2 for Af and 0.2375inch2 for A0 in Equation (IV).

R=0.2375inch20.1452inch20.2375inch2×100=0.0923inch20.2375inch2×100=0.3886×100=38.86%

Conclusion:

Thus, the reduction in the cross-sectional area is 38.86%.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A tensile test was performed on a metal specimen with a circular cross section. The diameter was measured to be 0.550 inch. Two marks were made along the length of the specimen and were measured to be 2.030 inches apart. This distance is defined as the gage length, and all length measurements are made between the two marks. The specimen was loaded to failure. Fracture occurred at a load of 28,500 pounds. The specimen was then reassembled, and the diameter and gage length were measured to be 0.430 inch and 2.300 inches. Determine the a. Ultimate tensile stress in ksi. b. Elongation as a percentage. c. Reduction in cross-sectional area as a percentage
Question 1 a) A standard mild steel tensile test specimen has a diameter of 16mm and a gauge length of 80mm. the specimen was tested to destruction and the following results obtained, Load at yield point = 87KN Extension at yield point = 173 x 10“ m Ultimate load = 124KN %3D Total extension at fracture = 24mm Diameter of specimen at fracture = 9.8mm Cross-sectional area at fracture = 75.4mm? Cross-sectional area "A" = 200mm² Compute the followings: Modulus of elasticity of steel. Ultimate tensile stress. i. ii. iii. Yield stress iv. Percentage elongation.
A 13 mm-diameter tensile specimen has a 50 mm gage length. The load corresponding to the 0.2 percent offset is 6800 kg and the maximum load is 1800 kg. Fracture occurs at 7300 kg. The diameter after fracture is 8 mm and the gage length at fracture is 65 mm. calculate the standard properties of the material from the tension test.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning