Concept explainers
(a)
Interpretation:
For the given set of measurements the significant figures has to be determined.
Concept introduction:
Significant figures: The digits having a meaning in a given number are called as significant figures.
Significant figures – calculation rules
- Significant figure is a non-zero number (4443.2 has five significant figures)
- Zero’s placement in between non-zero number are significant figures (40005 has five significant figures).
- Zero’s before the non-zero number are not significant number (0.00040005 has five significant figures).
- Zero’s after the non-zero number are significant in case of that number contains decimal point (4.5000 has five significant figures).
- Zero’s after the non-zero number may or may not be a significant figure in case of that number does not have a decimal point (500 may have 1, 2 or 3 significant figures). In this cases use scientific notation to avoid ambiguity.
To give: The significant figures for the given measurement
(b)
Interpretation:
For the given set of measurements the significant figures has to be determined.
Concept introduction:
Significant figures: The digits having a meaning in a given number are called as significant figures.
Significant figures – calculation rules
- Significant figure is a non-zero number (4443.2 has five significant figures)
- Zero’s placement in between non-zero number are significant figures (40005 has five significant figures).
- Zero’s before the non-zero number are not significant number (0.00040005 has five significant figures).
- Zero’s after the non-zero number are significant in case of that number contains decimal point (4.5000 has five significant figures).
- Zero’s after the non-zero number may or may not be a significant figure in case of that number does not have a decimal point (500 may have 1, 2 or 3 significant figures). In this cases use scientific notation to avoid ambiguity.
To give: The significant figures for the given measurement
(c)
Interpretation:
For the given set of measurements the significant figures has to be determined.
Concept introduction:
Significant figures: The digits having a meaning in a given number are called as significant figures.
Significant figures – calculation rules
- Significant figure is a non-zero number (4443.2 has five significant figures)
- Zero’s placement in between non-zero number are significant figures (40005 has five significant figures).
- Zero’s before the non-zero number are not significant number (0.00040005 has five significant figures).
- Zero’s after the non-zero number are significant in case of that number contains decimal point (4.5000 has five significant figures).
- Zero’s after the non-zero number may or may not be a significant figure in case of that number does not have a decimal point (500 may have 1, 2 or 3 significant figures). In this cases use scientific notation to avoid ambiguity.
To give: The significant figures for the given measurement
(d)
Interpretation:
For the given set of measurements the significant figures has to be determined.
Concept introduction:
Significant figures: The digits having a meaning in a given number are called as significant figures.
Significant figures – calculation rules
- Significant figure is a non-zero number (4443.2 has five significant figures)
- Zero’s placement in between non-zero number are significant figures (40005 has five significant figures).
- Zero’s before the non-zero number are not significant number (0.00040005 has five significant figures).
- Zero’s after the non-zero number are significant in case of that number contains decimal point (4.5000 has five significant figures).
- Zero’s after the non-zero number may or may not be a significant figure in case of that number does not have a decimal point (500 may have 1, 2 or 3 significant figures). In this cases use scientific notation to avoid ambiguity.
To give: The significant figures for the given measurement
(e)
Interpretation:
For the given set of measurements the significant figures has to be determined.
Concept introduction:
Significant figures: The digits having a meaning in a given number are called as significant figures.
Significant figures – calculation rules
- Significant figure is a non-zero number (4443.2 has five significant figures)
- Zero’s placement in between non-zero number are significant figures (40005 has five significant figures).
- Zero’s before the non-zero number are not significant number (0.00040005 has five significant figures).
- Zero’s after the non-zero number are significant in case of that number contains decimal point (4.5000 has five significant figures).
- Zero’s after the non-zero number may or may not be a significant figure in case of that number does not have a decimal point (500 may have 1, 2 or 3 significant figures). In this cases use scientific notation to avoid ambiguity.
To give: The significant figures for the given measurement
(f)
Interpretation:
For the given set of measurements the significant figures has to be determined.
Concept introduction:
Significant figures: The digits having a meaning in a given number are called as significant figures.
Significant figures – calculation rules
- Significant figure is a non-zero number (4443.2 has five significant figures)
- Zero’s placement in between non-zero number are significant figures (40005 has five significant figures).
- Zero’s before the non-zero number are not significant number (0.00040005 has five significant figures).
- Zero’s after the non-zero number are significant in case of that number contains decimal point (4.5000 has five significant figures).
- Zero’s after the non-zero number may or may not be a significant figure in case of that number does not have a decimal point (500 may have 1, 2 or 3 significant figures). In this cases use scientific notation to avoid ambiguity.
To give: The significant figures for the given measurement
(g)
Interpretation:
For the given set of measurements the significant figures has to be determined.
Concept introduction:
Significant figures: The digits having a meaning in a given number are called as significant figures.
Significant figures – calculation rules
- Significant figure is a non-zero number (4443.2 has five significant figures)
- Zero’s placement in between non-zero number are significant figures (40005 has five significant figures).
- Zero’s before the non-zero number are not significant number (0.00040005 has five significant figures).
- Zero’s after the non-zero number are significant in case of that number contains decimal point (4.5000 has five significant figures).
- Zero’s after the non-zero number may or may not be a significant figure in case of that number does not have a decimal point (500 may have 1, 2 or 3 significant figures). In this cases use scientific notation to avoid ambiguity.
To give: The significant figures for the given measurement
(h)
Interpretation:
For the given set of measurements the significant figures has to be determined.
Concept introduction:
Significant figures: The digits having a meaning in a given number are called as significant figures.
Significant figures – calculation rules
- Significant figure is a non-zero number (4443.2 has five significant figures)
- Zero’s placement in between non-zero number are significant figures (40005 has five significant figures).
- Zero’s before the non-zero number are not significant number (0.00040005 has five significant figures).
- Zero’s after the non-zero number are significant in case of that number contains decimal point (4.5000 has five significant figures).
- Zero’s after the non-zero number may or may not be a significant figure in case of that number does not have a decimal point (500 may have 1, 2 or 3 significant figures). In this cases use scientific notation to avoid ambiguity.
To give: The significant figures for the given measurement
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
Chemistry: Atoms First
- Perform the following arithmetic operations and report the result to the proper number of significant figures: (a) 317.5 mL + 0.675 mL,(b) 47.80 L − 2.075 L, (c) 13.5 g ÷ 45.18 L, (d) 6.25 cm × 1.175 cm, (e) 5.46 × 102 g + 4.991 × 103g.arrow_forwardCarry out the following conversions: (a) 32.4 yd to centimeters, (b) 3.0 × 1010 cm/s to ft/s, (c) 1.42 light-years to miles (a light-year is an astronomical measure of distance—the distance traveled by light in a year, or365 days; the speed of light is 3.00 × 108m/s).arrow_forward2. Carry out the following operations and express the answer with the appropriate number of significant figures and units: (a) (5.231 mm)(6.1 mm), (b) 72.3 g/1.5 mL, (c) 12.21 g+0.0132 g, and (d) 31.03 g+ 12 mg.arrow_forward
- Perform the following arithmetic operations, and report the result to the proper number of significantfigures: (a) 1.0267 cm × 2.508 cm × 12.599 cm, (b) 15.0 kg ÷ 0.036 m3 , (c) 1.113 × 1010 kg − 1.050 × 109 kg, (d) 25.75 mL + 15.00 mL, (e) 46 cm3 + 180.5 cm3arrow_forwardwhat is the number of significant figures in each of the following measured quantities:(a) 351 g, (b) 0.0100 mL, and (d) 3.72 x 10-3 cm?arrow_forwardb) One sphere has a radius of 5.10 cm; another has a radius of 5.00 cm. What is the difference in volume (in cubic centimeters) between the two spheres? Give the answer to the correct number of significant figures. The volume of a sphere is (4/3)TTr³, where TT= 3.1416 and r is the radius.arrow_forward
- Carry out the following conversions: (a) 1.42 lightyears to miles (a light-year is an astronomical measure of distance—the distance traveled by light in a year, or 365 days; the speed of light is 3.00x10^8 m/s), (b) 32.4 yd to centimeters, (c) 3.0 3x10^10 cm/s to ft/s.arrow_forwardPerform the following arithmetic operations, and report the result to the proper number of significant figures:(a) 105.5 L + 10.65 L, (b) 81.058 m − 0.35 m, (c) 3.801 × 1021 atoms + 1.228 × 1019 atoms, (d) 1.255 dm × 25 dm, (e) 139 g ÷ 275.55 mL.arrow_forward(a) A cube of osmium metal 1.500 cm on a side has a mass of76.31 g at 25 °C. What is its density in g/cm3 at this temperature?(b) The density of titanium metal is 4.51g/cm3 at 25 °C.What mass of titanium displaces 125.0 mL of water at 25 °C? (c) The density of benzene at 15 °C is 0.8787 g/mL. Calculatethe mass of 0.1500 L of benzene at this temperature.arrow_forward
- Calculate these volumes.(a) What is the volume of 35 g iodine, density = 4.93 g/cm 3 ?(b) What is the volume of 33.28 g gaseous hydrogen, density = 0.089 g/L?arrow_forwardA group of students took turns using a laboratory balanceto weigh the water contained in a beaker. The results theyreported were 111.42 g, 111.67 g, 111.21 g, 135.64 g,111.02 g, 111.29 g, and 111.42 g.(a) Should any of the data be excluded before the average is calculated?(b) From the remaining measurements, calculate the average value of the mass of the water in the beaker.(c) Calculate the standard deviation s and, from it, the 95% confidence limit.arrow_forwardCalculate these masses.(a) What is the mass of 6.00 cm 3 of sodium, density = 0.97 g/cm 3 ?(b) What is the mass of 155 mL gaseous chlorine, density = 3.16 g/L?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning