College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 13CQ
A skydiver jumps out of an airplane. Her speed steadily increases until she deploys her parachute, at which point her speed quickly decreases. She subsequently falls to earth at a constant rate, stopping when she lands on the ground. Draw a motion diagram, using the particle model, that shows her position at successive times and includes velocity vectors.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I am doing a lab report for my physics class. The lab consists of throwing a ball upward and recording its movements. Please explain these next questions and how you got the answer.
Determine the launch velocity of the ball from the velocity vs. time graphs in the x and y directions. Is this value reasonable? Determine the velocity of the ball at its highest point. Is this value reasonable?
35. A person going for a walk follows the path shown in
T Figure P3.35. The total trip consists of four straight-line
paths. At the end of the walk, what is the person's resultant
displacement measured from the starting point?
Start 100 m
300 m
End
200 m
30.0
150 m
60.0°
Figure P3.35
The bacterium Escherichia coli (or E. coli) is a single-celled
organism that lives in the gut of healthy humans and
animals. When grown in a uniform medium rich in salts and
amino acids, these bacteria swim along zig-zag paths at a
constant speed of 20 μm/s. The figure shows the
trajectory of an E. coli as it moves from point A to point E.
Each segment of the motion can be identified by two letters,
such as segment BC. (Figure 1)
Figure
y (μm)
40
30
20
10-
0
-10-
-20
-30
A
-40
C
E
D
B
10 20 30 40 50 60 70 80 90 100
1 of 1
x (μm)
For the segment AB in the bacterium's trajectory, calculate the x and y components of its displacement.
Express your answers in micrometers to two significant figures separated by a comma.
ΨΕ ΑΣΦ
XAB, YAB
Submit
=
Part B
Previous Answers Request Answer
X Incorrect; Try Again; One attempt remaining
?
um
For the segment BC in the bacterium's trajectory, calculate the x and y components of its displacement.
Express your answers in micrometers to two significant…
Chapter 1 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 1 - a Write a paragraph describing the particle model....Ch. 1 - A softball player slides into second base. Use the...Ch. 1 - A car travels to the left at a steady speed for a...Ch. 1 - A ball is dropped from the roof of a tall building...Ch. 1 - Write a sentence or two describing the difference...Ch. 1 - Give an example of a trip you might take in your...Ch. 1 - Write a sentence or two describing the difference...Ch. 1 - The motion of a skateboard along a horizontal axis...Ch. 1 - You are standing on a straight stretch of road and...Ch. 1 - Two friends watch a jogger complete a 400 m lap...
Ch. 1 - A softball player hits the ball and starts running...Ch. 1 - A child is sledding on a smooth, level patch of...Ch. 1 - A skydiver jumps out of an airplane. Her speed...Ch. 1 - Your roommate drops a tennis ball from a...Ch. 1 - A car is driving north at a steady speed. It makes...Ch. 1 - A toy car rolls down a ramp, then across a smooth,...Ch. 1 - Density is the ratio of an object's mass to its...Ch. 1 - A student walks 1.0 mi west and then 1.0 mi north....Ch. 1 - You throw a rock upward. The rock is moving...Ch. 1 - Which of the following motions could be described...Ch. 1 - Which of the following motions is described by the...Ch. 1 - A bird flies 3.0 km due west and then 2.0 km due...Ch. 1 - Weddell seals make holes in sea ice so that they...Ch. 1 - A bird flies 3.0 km due west and then 2.0 km due...Ch. 1 - A woman walks briskly at 2.00 m/s. How much time...Ch. 1 - Compute 3.24 m + 0.532 m to the correct number of...Ch. 1 - A rectangle has length 3.24 m and height 0.532 m....Ch. 1 - The earth formed 4.57 109 years ago. What is this...Ch. 1 - Prob. 29MCQCh. 1 - A car skids to a halt to avoid hitting an object...Ch. 1 - A man rides a bike along a straight road for 5...Ch. 1 - A jogger running east at a steady pace suddenly...Ch. 1 - Figure P1.4 shows Sue along the straight-line path...Ch. 1 - Keira starts at position x = 23 m along a...Ch. 1 - A car travels along a straight east-west road. A...Ch. 1 - Foraging bees often move in straight lines away...Ch. 1 - A security guard walks at a steady pace, traveling...Ch. 1 - List the following items in order of decreasing...Ch. 1 - Figure P1.10 shows the motion diagram for a horse...Ch. 1 - It takes Harry 35 s to walk from x = 12 m to x = ...Ch. 1 - A dog trots from x = 12 m to x = 3 m in 10 s....Ch. 1 - A ball rolling along a straight line with velocity...Ch. 1 - Convert the following to SI units: a. 9.12 s b....Ch. 1 - Convert the following to SI units: a. 8.0 in b. 66...Ch. 1 - Convert the following to SI units: a. 1.0 hour b....Ch. 1 - How many significant figures does each of the...Ch. 1 - How many significant figures does each of the...Ch. 1 - Compute the following numbers to three significant...Ch. 1 - lf you make multiple measurements of your height,...Ch. 1 - The Empire State Building has a height of 1250 ft....Ch. 1 - Blades of grass grow from the bottom, so, as...Ch. 1 - Estimate the average speed, in m/s, with which the...Ch. 1 - Carol and Robin share a house. To get to work,...Ch. 1 - Loveland, Colorado, is 18 km due south of Fort...Ch. 1 - Joe and Max shake hands and say goodbye. Joe walks...Ch. 1 - A city has streets laid out in a square grid, with...Ch. 1 - A butterfly flies from the top of a tree in the...Ch. 1 - A garden has a circular path of radius 50 m. John...Ch. 1 - A circular test track for cars in England has a...Ch. 1 - Migrating geese tend to travel at approximately...Ch. 1 - Black vultures excel at gliding flight; they can...Ch. 1 - A hiker walks 25 north of east for 200m. How far...Ch. 1 - A hiker is climbing a steep 10 slope. Her...Ch. 1 - A ball on a porch rolls 60 cm to the porch's edge,...Ch. 1 - A kicker punts a football from the very center of...Ch. 1 - A squirrel completing a short glide travels in a...Ch. 1 - A squirrel in a typical long glide covers a...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 46 through 50 show a motion diagram. For...Ch. 1 - Problems 46 through 50 show a motion diagram. For...Ch. 1 - Problems 46 through 50 show a motion diagram. For...Ch. 1 - Problems 46 through 50 show a motion diagram. For...Ch. 1 - Problems 46 through 50 show a motion diagram. For...Ch. 1 - Prob. 51GPCh. 1 - Joseph watches the roadside mile markers during a...Ch. 1 - Alberta is going to have dinner at her...Ch. 1 - The end of Hubbard Glacier in Alaska advances by...Ch. 1 - The earth completes a circular orbit around the...Ch. 1 - Shannon decides to check the accuracy of her...Ch. 1 - The Nardo ring is a circular test track for cars....Ch. 1 - Motor neurons in mammals transmit signals from the...Ch. 1 - Satellite data taken several times per hour on a...Ch. 1 - The bacterium Escherichia coli (or E. coli) is a...Ch. 1 - The bacterium Escherichia coli (or E. coli) is a...Ch. 1 - The sun is 30 above the horizon. It makes a...Ch. 1 - Weddell seals foraging in open water dive toward...Ch. 1 - A large passenger aircraft accelerates down the...Ch. 1 - Whale sharks swim forward while ascending or...Ch. 1 - Starting from its nest, an eagle flies at constant...Ch. 1 - John walks 1.00 km north, then turns right and...Ch. 1 - The images of trees in Figure P1.68 come from a...Ch. 1 - The images of trees in Figure P1.68 come from a...Ch. 1 - The images of trees in Figure P1.68 come from a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
2. Julie drives 100 mi to Grandmother’s house. On the way to Grandmother’s, Julie drives half the distance at 4...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Centrifuge A centrifuge at the same museum is used to separate seeds of different sizes. The average rotational...
College Physics
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
3. Does a good insulator prevent heat from getting through it, or does it simply delay its passage?
Conceptual Physical Science (6th Edition)
An infinitely long solid cylinder of radius R carries a nonuniform charge density given by = 0(r/R), where 0 i...
Essential University Physics (3rd Edition)
Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross produc...
Introduction to Electrodynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The movement of an object in the ay-plane is described by the position function: r(t) = #(t)i + y(t)j Which of the following five statements is NOT always true? O a. If the velocity vector of the object never changes, then the speed of the object never changes. O b. In any moment of time, the speed of this object is the same as the speed of the object whose movement is described by the position function s(t) = y(t)i + a(t)j C. O C. If the speed of the object is constant, then the object has zero acceleration. o d. If the velocity vector of the object never changes, then the object has zero acceleration. O e. if z(t) and y(t) are both linear functions, then the velocity vector of the object never changes.arrow_forwardA softball player hits the ball and starts running toward first base. Draw a motion diagram, using the particle model, showing her velocity vectors during the first few seconds of her run.arrow_forwardAn airplane takes off and flies upward at an angle of 21° with a constant speed of 262 m/s. While the plane is flying upward, a piece of the engine falls off when the plane reaches a height of 860 m. a) How long does it take the piece of the engine to reach the ground? Give your answer in seconds. b) What is the horizontal distance covered by the piece of the engine before it lands? Give your answer in meters.arrow_forward
- You stand at the edge of a 22.0 m high cliff and throw a stone straight down with a speed of 8.00 m/s. Before it hits the ground, the stone is traveling with a speed of 22.3 m/s. Let down be the positive vertical direction. Using the given coordinate system, what is the sign of the displacement of the stone from the point it is released until just before it hits the ground? O Negative Zero O Positivearrow_forwardHello. I am working on a problem with motion. The questions asks me to calculate the maximum height (h1), total time (t2), and speed of a ball right before it hits the ground. The question states that A person is throwing a ball upward into the air with an initial speed Vo = 10m/s. Assume that the instant when the ball is released, the person's hand is at a height ho = 1.5m. The speed of the ball at its peak height is zero, and the question needs to be solved in ascending part and descending part. I don't understand how to solve for the maximum height. What is the correct formula to use and why? For other questions like this, I will be able to solve them if I know the formulas for the ascending of the ball and the descent of the ball as well as the explanation. Thank you. For the sake of the question, the ball is being thrown straight up.arrow_forwardChapter 04, Problem 034 Flying Circus of Physics A trebuchet was a hurling machine built to attack the walls of a castle under siege. A large stone could be hurled against a wall to break apart the wall. The machine was not placed near the wall because then arrows could reach it from the castle wall. Instead, it was positioned so that the stone hit the wall during the second half of its flight. Suppose a stone is launched with a speed of V. = 39.0°. What is the speed of the stone if it hits the wall (a) just as it reaches the top of its parabolic path and (b) when it has descended to half that height? (c) As a percentage, how much faster is it moving in part (b) than in part (a)? = 25.0 m/s and at an angle of Units (a) Number Units (b) Number (c) Number Units Click if you would like to Show Work for this question: Open Show Work SAVE FOR LATER SUBMIT ANSWER Question Attempts: 0 of 10 usedarrow_forward
- Please assist with this question with details on how to do it. Thank you. Mayan kings and many school sports team are named for the puma, cougar, or mountain lion - felis concolor- the best jumper among animals. It can jump to a height of 12 ft when leaving the ground at an angle of 45 degrees. With the speed , in SI units, does it leave the ground to make this leap?arrow_forwardA fly ball is hit to the outfield during a baseball game. Let’s neglect the effects of air resistance on the ball. The motion of the ball is animated in the simulation (linked below). The animation assumes that the ball’s initial location on the y axis is y0 = 1 m, and the ball's initial velocity has components v0x = 20 m/s and v0y = 20 m/s. Calculate the horizontal distance the baseball travels before landing on the ground at y = 0. (Write only the numerical value rounded to a whole number and exclude the unit)arrow_forwardA man runs around a circular track of 800 m radius for 30 secs, starting at a point directly to the right of the center and goes in a counterclockwise manner. He goes 5 m/s for the first 15 secs, runs 90 m for the next 6 secs, and then 180 m for the rest of the course. What is his average speed? What was his displacement from the starting point? What was his average velocity?arrow_forward
- 4. At the construction site of a tall building, a worker is in an elevator descending at a constant downwards velocity of 5 m/s. When the elevator is 40 meters above ground level, her friend, standing at ground level, tosses a wrench straight upward with an initial speed of 25 m/s. Take the time when the wrench is tossed as t = 0. For this problem, use g = 10 m/s². a. Draw a labeled picture with symbols and all relevant values. Quantities that are different should be given different symbols, for example y, and Yw. b. Graph the velocities versus time of the elevator and the wrench on the same graph. Label axes of the graph (with units). C. At what time does the wrench and the elevator have the same velocity? 20 10 -10 -20 3 4 time (s) d. Which object (the wrench or elevator) is higher when their velocities are the same? By how much is one object higher than the other at this time? (s/u) kaarrow_forwardIn the children's book Nuts to You, a young squirrel named Jed is snatched up by a hawk. While in the air Jed manages to go limp, slip through the hawk's talons and fall to the forest floor. The hawk travels horizontally at a speed of 4.86m/s . (You may neglect any effects of air resistance as you answer the following questions). One second after being released, what is the y-component of Jed's velocity?arrow_forwardA speedboat increases its speed uniformly from vi = 20.0 m/s to Vf = 30.0 m/s in a distance of 2.00 102 m. (a) Draw a coordinate system for this situation and label the relevant quantities, including vectors, (b) For the given information, what single equation is most appropriate for finding the acceleration? (c) Solve the equation selected in part (b) symbolically for the boats acceleration in terms of vf, vi, and x. (d) Substitute given values, obtaining that acceleration, (e) Find the time it takes the boat to travel the given distance.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Speed Distance Time | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=EGqpLug-sDk;License: Standard YouTube License, CC-BY