College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 13CQ
A skydiver jumps out of an airplane. Her speed steadily increases until she deploys her parachute, at which point her speed quickly decreases. She subsequently falls to earth at a constant rate, stopping when she lands on the ground. Draw a motion diagram, using the particle model, that shows her position at successive times and includes velocity vectors.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I am doing a lab report for my physics class. The lab consists of throwing a ball upward and recording its movements. Please explain these next questions and how you got the answer.
Determine the launch velocity of the ball from the velocity vs. time graphs in the x and y directions. Is this value reasonable? Determine the velocity of the ball at its highest point. Is this value reasonable?
A toy car can move to the right or left along a horizontal line (the positive portion of the distance
axis). The positive direction is to the right.
0
+
Choose the correct velocity-time graph (A - H) for each of the following questions. You may
use a graph more than once or not at all. If you think that none is correct, answer choice J.
A
B
D
V
e
e
1
e
+
0
0
0
e 0
1
0
Time
Time
Time
Time
E
G
H
V
1
V
+
0
e 0
1
0
0
None of these graphs is correct.
Time
Time
Time
Time
Which velocity graph shows the car moving toward the left (toward the origin) at a steady
(constant) velocity?
The movement of an object in the ay-plane is described by the position function:
r(t) = #(t)i + y(t)j
Which of the following five statements is NOT always true?
O a. If the velocity vector of the object never changes, then the speed of the object
never changes.
O b. In any moment of time, the speed of this object is the same as the speed of the
object whose movement is described by the position function
s(t) = y(t)i + a(t)j
C.
O C. If the speed of the object is constant, then the object has zero acceleration.
o d. If the velocity vector of the object never changes, then the object has zero
acceleration.
O e. if z(t) and y(t) are both linear functions, then the velocity vector of the object
never changes.
Chapter 1 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 1 - a Write a paragraph describing the particle model....Ch. 1 - A softball player slides into second base. Use the...Ch. 1 - A car travels to the left at a steady speed for a...Ch. 1 - A ball is dropped from the roof of a tall building...Ch. 1 - Write a sentence or two describing the difference...Ch. 1 - Give an example of a trip you might take in your...Ch. 1 - Write a sentence or two describing the difference...Ch. 1 - The motion of a skateboard along a horizontal axis...Ch. 1 - You are standing on a straight stretch of road and...Ch. 1 - Two friends watch a jogger complete a 400 m lap...
Ch. 1 - A softball player hits the ball and starts running...Ch. 1 - A child is sledding on a smooth, level patch of...Ch. 1 - A skydiver jumps out of an airplane. Her speed...Ch. 1 - Your roommate drops a tennis ball from a...Ch. 1 - A car is driving north at a steady speed. It makes...Ch. 1 - A toy car rolls down a ramp, then across a smooth,...Ch. 1 - Density is the ratio of an object's mass to its...Ch. 1 - A student walks 1.0 mi west and then 1.0 mi north....Ch. 1 - You throw a rock upward. The rock is moving...Ch. 1 - Which of the following motions could be described...Ch. 1 - Which of the following motions is described by the...Ch. 1 - A bird flies 3.0 km due west and then 2.0 km due...Ch. 1 - Weddell seals make holes in sea ice so that they...Ch. 1 - A bird flies 3.0 km due west and then 2.0 km due...Ch. 1 - A woman walks briskly at 2.00 m/s. How much time...Ch. 1 - Compute 3.24 m + 0.532 m to the correct number of...Ch. 1 - A rectangle has length 3.24 m and height 0.532 m....Ch. 1 - The earth formed 4.57 109 years ago. What is this...Ch. 1 - Prob. 29MCQCh. 1 - A car skids to a halt to avoid hitting an object...Ch. 1 - A man rides a bike along a straight road for 5...Ch. 1 - A jogger running east at a steady pace suddenly...Ch. 1 - Figure P1.4 shows Sue along the straight-line path...Ch. 1 - Keira starts at position x = 23 m along a...Ch. 1 - A car travels along a straight east-west road. A...Ch. 1 - Foraging bees often move in straight lines away...Ch. 1 - A security guard walks at a steady pace, traveling...Ch. 1 - List the following items in order of decreasing...Ch. 1 - Figure P1.10 shows the motion diagram for a horse...Ch. 1 - It takes Harry 35 s to walk from x = 12 m to x = ...Ch. 1 - A dog trots from x = 12 m to x = 3 m in 10 s....Ch. 1 - A ball rolling along a straight line with velocity...Ch. 1 - Convert the following to SI units: a. 9.12 s b....Ch. 1 - Convert the following to SI units: a. 8.0 in b. 66...Ch. 1 - Convert the following to SI units: a. 1.0 hour b....Ch. 1 - How many significant figures does each of the...Ch. 1 - How many significant figures does each of the...Ch. 1 - Compute the following numbers to three significant...Ch. 1 - lf you make multiple measurements of your height,...Ch. 1 - The Empire State Building has a height of 1250 ft....Ch. 1 - Blades of grass grow from the bottom, so, as...Ch. 1 - Estimate the average speed, in m/s, with which the...Ch. 1 - Carol and Robin share a house. To get to work,...Ch. 1 - Loveland, Colorado, is 18 km due south of Fort...Ch. 1 - Joe and Max shake hands and say goodbye. Joe walks...Ch. 1 - A city has streets laid out in a square grid, with...Ch. 1 - A butterfly flies from the top of a tree in the...Ch. 1 - A garden has a circular path of radius 50 m. John...Ch. 1 - A circular test track for cars in England has a...Ch. 1 - Migrating geese tend to travel at approximately...Ch. 1 - Black vultures excel at gliding flight; they can...Ch. 1 - A hiker walks 25 north of east for 200m. How far...Ch. 1 - A hiker is climbing a steep 10 slope. Her...Ch. 1 - A ball on a porch rolls 60 cm to the porch's edge,...Ch. 1 - A kicker punts a football from the very center of...Ch. 1 - A squirrel completing a short glide travels in a...Ch. 1 - A squirrel in a typical long glide covers a...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 46 through 50 show a motion diagram. For...Ch. 1 - Problems 46 through 50 show a motion diagram. For...Ch. 1 - Problems 46 through 50 show a motion diagram. For...Ch. 1 - Problems 46 through 50 show a motion diagram. For...Ch. 1 - Problems 46 through 50 show a motion diagram. For...Ch. 1 - Prob. 51GPCh. 1 - Joseph watches the roadside mile markers during a...Ch. 1 - Alberta is going to have dinner at her...Ch. 1 - The end of Hubbard Glacier in Alaska advances by...Ch. 1 - The earth completes a circular orbit around the...Ch. 1 - Shannon decides to check the accuracy of her...Ch. 1 - The Nardo ring is a circular test track for cars....Ch. 1 - Motor neurons in mammals transmit signals from the...Ch. 1 - Satellite data taken several times per hour on a...Ch. 1 - The bacterium Escherichia coli (or E. coli) is a...Ch. 1 - The bacterium Escherichia coli (or E. coli) is a...Ch. 1 - The sun is 30 above the horizon. It makes a...Ch. 1 - Weddell seals foraging in open water dive toward...Ch. 1 - A large passenger aircraft accelerates down the...Ch. 1 - Whale sharks swim forward while ascending or...Ch. 1 - Starting from its nest, an eagle flies at constant...Ch. 1 - John walks 1.00 km north, then turns right and...Ch. 1 - The images of trees in Figure P1.68 come from a...Ch. 1 - The images of trees in Figure P1.68 come from a...Ch. 1 - The images of trees in Figure P1.68 come from a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
FOCUS ON ENERGY AND MATTER In a short essay (about 100-150 words), discuss how prokaryotes and other members of...
Campbell Biology in Focus (2nd Edition)
4. What five specific threats to biodiversity are described in this chapter? Provide an example of each.
Biology: Life on Earth (11th Edition)
What is the reducing agent in the following reaction?
2 Br –– (aq) + H2 O2 (aq) + 2 H+ (aq) → Br2 (aq) + 2 H2 ...
Chemistry: The Central Science (14th Edition)
Use a globe or map to determine, as accurately as possible, the latitude and longitude of Athens, Greece.
Applications and Investigations in Earth Science (9th Edition)
5.28 Neurofibromatosis is an autosomal dominant disorder inherited on human chromosome. Part of the analysis ma...
Genetic Analysis: An Integrated Approach (3rd Edition)
Fill in the blanks: The nose is to the mouth. The ankle is to the knee. The ring finger is to the inde...
Human Anatomy & Physiology (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 1. A biologist is investigating the behavior of ants. The graph below shows the position of an ant as a function of time as the ant moves along a celery stalk. To describe the ant's motion, a coordinate system is chosen such that x = 0 at the center of the stalk and positive values of x indicate positions on the leafy end of the stalk. 2 3 6 t, sec (a) At what time or times, if any, is the ant at rest? Explain. (b) At what time or times, if any, is the ant moving toward the leafy end of the celery stalk? Explain. (c) At what time or times, if any, does the ant change direction? Explain. -00arrow_forwardAn object moves in one dimensional motion with constant acceleration a = 7.4 m/s². At time t = 0 s, the object is at x = 3.2 m and has an initial velocity of vo = 4 m/s. How far will the object move before it achieves a velocity of v = 6.6 m/s? Your answer should be accurate to the nearest 0.1 m.arrow_forwardA BS Chemistry students in physics class are conducting a research project on projectile motion constructs a device that can launch a pingpong ball. The launching device is designed so that the ball can be launched at ground level with an initial velocity of 28 m/s at an angle of 30° to the horizontal. At what time will the ball reach its maximum height? 28 m s-1 30 ground level O 1.43 s 2.86 s O 2 s 1 Sarrow_forward
- An arrow is launched vertically upward. It moves straight up to a maximum height, then falls to the ground. Which pair of graphs best describes the motion of the arrow as a function of time while it is in the air? Pay attention to the vertical axis, y is position, v is velocity and a is acceleration.arrow_forwardHello. I am working on a problem with motion. The questions asks me to calculate the maximum height (h1), total time (t2), and speed of a ball right before it hits the ground. The question states that A person is throwing a ball upward into the air with an initial speed Vo = 10m/s. Assume that the instant when the ball is released, the person's hand is at a height ho = 1.5m. The speed of the ball at its peak height is zero, and the question needs to be solved in ascending part and descending part. I don't understand how to solve for the maximum height. What is the correct formula to use and why? For other questions like this, I will be able to solve them if I know the formulas for the ascending of the ball and the descent of the ball as well as the explanation. Thank you. For the sake of the question, the ball is being thrown straight up.arrow_forwardA soccer ball is kicked from the ground with an initial speed of 20.1 m/s at an upward angle of 48.2°. A player 53.9 m away in the direction of the kick starts running to meet the ball at that instant. What must be his average speed if he is to meet the ball just before it hits the ground? Neglect air resistance.Use g=9.81 m/s². Number i Unit m/sarrow_forward
- A particle moves along in three-dimensional motion with position vector given x (t) = 3.20 t m i + 2.00 t2 m j – 0.30 t³ a. What is the magnitude of the position vector of the particle when t = 3.00 s? b. Determine the magnitude of the instantaneous velocity of the particle when t = 2.00 s .arrow_forward4. At the construction site of a tall building, a worker is in an elevator descending at a constant downwards velocity of 5 m/s. When the elevator is 40 meters above ground level, her friend, standing at ground level, tosses a wrench straight upward with an initial speed of 25 m/s. Take the time when the wrench is tossed as t = 0. For this problem, use g = 10 m/s². a. Draw a labeled picture with symbols and all relevant values. Quantities that are different should be given different symbols, for example y, and Yw. b. Graph the velocities versus time of the elevator and the wrench on the same graph. Label axes of the graph (with units). C. At what time does the wrench and the elevator have the same velocity? 20 10 -10 -20 3 4 time (s) d. Which object (the wrench or elevator) is higher when their velocities are the same? By how much is one object higher than the other at this time? (s/u) kaarrow_forwardACTIVITY #2 1. A car travels in the +x direction on a straight and level road. For the first 4 seconds of its motion, the average velocity is 6.25 m/s. How far does the car travel in 4 seconds? 2. Starting from a pillar you run 200 m east at an average speed of 5 m/s and then run 280 m west at an average of 4 m/s to a post. Calculate a. your average speed from pillar to post and b. your average velocity from pillar to postarrow_forward
- A speedboat increases its speed uniformly from vi = 20.0 m/s to Vf = 30.0 m/s in a distance of 2.00 102 m. (a) Draw a coordinate system for this situation and label the relevant quantities, including vectors, (b) For the given information, what single equation is most appropriate for finding the acceleration? (c) Solve the equation selected in part (b) symbolically for the boats acceleration in terms of vf, vi, and x. (d) Substitute given values, obtaining that acceleration, (e) Find the time it takes the boat to travel the given distance.arrow_forwardA student stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of vi= 18.0 m/s. The cliff is h = 50.0 m above a body of water as shown in Figure P3.19. (a) What are the coordinates of the initial position of the stone? (b) What are the components of the initial velocity of the stone? (c) What is the appropriate analysis model for the vertical motion of the stone? (d) What is the appropriate analysis model for the horizontal motion of the stone? (e) Write symbolic equations for the x and y components of the velocity of the stone as a function of time. (f) Write symbolic equations for the position of the stone as a function of time. (g) How long after being released does the stone strike the water below the cliff? (h) With what speed and angle of impact does the stone land?arrow_forwardA projectile is launched on the Earth with a certain initial velocity and moves without air resistance. Another projectile is launched with the same initial velocity on the Moon, where the acceleration due to gravity is one-sixth as large. How does the range of the projectile on the Moon compare with that of the projectile on the Earth? (a) It is one-sixth as large. (b) It is the same. (c) It is 6 times larger. (d) It is 6 times larger. (e) It is 36 times larger.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Speed Distance Time | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=EGqpLug-sDk;License: Standard YouTube License, CC-BY