FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
9th Edition
ISBN: 9781119840589
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1, Problem 1.21P
To determine
Find the units of A and B.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Louisiana Superdome has an interior volume of 125 million ft3, covered by a 440,000 ft² roof. On a
particular day, the interior air pressure gave a manometer reading of 19 inches mercury (pHg = 13.6 g/cm³).
Local atmospheric pressure is 102 kPa.
1.
kg
Calculate the mass of the air inside, assuming an average temperature of 20 °C.
2.
kN
Calculate the net force applied to the roof by the interior/exterior air (do not
account for the weight of the roof). Assume the roof is flat.
Subject Thermodynamics. Instructions: Don't round off in the process. Just round off in the final answer with 2 decimals only. Use 273.15 K to convert Celsius to Kelvin.
P1.4 A gas is contained in a cylinder behind a frictionless piston of diameter 0.1 m and mass 25 kg. When an
additional mass M is placed on the piston the gage pressure of the gas becomes 2.0 bar. The local barometric
pressure is 775 mm of mercury. (a) Calculate (i) the mass of M and (ii) the absolute pressure of the gas in the
cylinder. (b) The piston is held in this position with the aid of a lock on the outside while heat is supplied to the
gas until its absolute pressure becomes 4 bar. Calculate the force on the lock in the final equilibrium state.
[Answers: (a) (i) 135 kg, (ii) 3.034 bar, (b) 758 N]
Chapter 1 Solutions
FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
Ch. 1 - Prob. 1.2ECh. 1 - Prob. 1.3ECh. 1 - Prob. 1.4ECh. 1 - Prob. 1.5ECh. 1 - Prob. 1.6ECh. 1 - Prob. 1.7ECh. 1 - Prob. 1.8ECh. 1 - Prob. 1.9ECh. 1 - Prob. 1.10ECh. 1 - Prob. 1.11E
Ch. 1 - Prob. 1.12ECh. 1 - Prob. 1.13ECh. 1 - Prob. 1.14ECh. 1 - Prob. 1.1CUCh. 1 - Prob. 1.2CUCh. 1 - Prob. 1.3CUCh. 1 - Prob. 1.4CUCh. 1 - Prob. 1.5CUCh. 1 - Prob. 1.6CUCh. 1 - Prob. 1.7CUCh. 1 - Prob. 1.8CUCh. 1 - Prob. 1.9CUCh. 1 - Prob. 1.10CUCh. 1 - Prob. 1.11CUCh. 1 - Prob. 1.12CUCh. 1 - Prob. 1.13CUCh. 1 - Prob. 1.14CUCh. 1 - Prob. 1.15CUCh. 1 - Prob. 1.16CUCh. 1 - Prob. 1.17CUCh. 1 - Prob. 1.18CUCh. 1 - Prob. 1.19CUCh. 1 - Prob. 1.20CUCh. 1 - Prob. 1.21CUCh. 1 - Prob. 1.22CUCh. 1 - Prob. 1.23CUCh. 1 - Prob. 1.24CUCh. 1 - Prob. 1.25CUCh. 1 - Prob. 1.26CUCh. 1 - Prob. 1.27CUCh. 1 - Prob. 1.28CUCh. 1 - Prob. 1.29CUCh. 1 - Prob. 1.30CUCh. 1 - Prob. 1.31CUCh. 1 - Prob. 1.32CUCh. 1 - Prob. 1.33CUCh. 1 - Prob. 1.34CUCh. 1 - Prob. 1.35CUCh. 1 - Prob. 1.36CUCh. 1 - Prob. 1.37CUCh. 1 - Prob. 1.38CUCh. 1 - Prob. 1.39CUCh. 1 - Prob. 1.40CUCh. 1 - Prob. 1.41CUCh. 1 - Prob. 1.42CUCh. 1 - Prob. 1.43CUCh. 1 - Prob. 1.44CUCh. 1 - Prob. 1.45CUCh. 1 - Prob. 1.46CUCh. 1 - Prob. 1.47CUCh. 1 - Prob. 1.48CUCh. 1 - Prob. 1.49CUCh. 1 - Prob. 1.50CUCh. 1 - Prob. 1.51CUCh. 1 - Prob. 1.52CUCh. 1 - Prob. 1.53CUCh. 1 - Prob. 1.54CUCh. 1 - Prob. 1.55CUCh. 1 - Prob. 1.56CUCh. 1 - Prob. 1.57CUCh. 1 - Prob. 1.58CUCh. 1 - Prob. 1.4PCh. 1 - Prob. 1.5PCh. 1 - Prob. 1.6PCh. 1 - Prob. 1.7PCh. 1 - Prob. 1.8PCh. 1 - Prob. 1.9PCh. 1 - Prob. 1.10PCh. 1 - Prob. 1.11PCh. 1 - Prob. 1.12PCh. 1 - Prob. 1.13PCh. 1 - Prob. 1.14PCh. 1 - Prob. 1.16PCh. 1 - Prob. 1.17PCh. 1 - Prob. 1.18PCh. 1 - Prob. 1.19PCh. 1 - Prob. 1.20PCh. 1 - Prob. 1.21PCh. 1 - Prob. 1.22PCh. 1 - Prob. 1.23PCh. 1 - Prob. 1.24PCh. 1 - Prob. 1.25PCh. 1 - Prob. 1.26PCh. 1 - Prob. 1.27PCh. 1 - Prob. 1.28PCh. 1 - Prob. 1.29PCh. 1 - Prob. 1.30PCh. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - Prob. 1.33PCh. 1 - Prob. 1.34PCh. 1 - Prob. 1.35PCh. 1 - Prob. 1.36PCh. 1 - Prob. 1.37PCh. 1 - Prob. 1.38PCh. 1 - Prob. 1.39PCh. 1 - Prob. 1.40PCh. 1 - Prob. 1.41PCh. 1 - Prob. 1.42PCh. 1 - Prob. 1.43PCh. 1 - Prob. 1.44PCh. 1 - Prob. 1.45PCh. 1 - Prob. 1.46PCh. 1 - Prob. 1.47PCh. 1 - Prob. 1.48PCh. 1 - Prob. 1.49P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- P1.26 When we in the United States say a car's tire is filled “to 32 lb," we mean that its internal pressure is 32 lbf/in above the ambient atmosphere. If the tire is at sea level, has a volume of 3.0 ft’, and is at 75°F, estimate the total weight of air, in lbf, inside the tire.arrow_forwardFLUID MECHANICSarrow_forwardProblem 4.2 An automobile tire having a volume of 3 ft³ contains air at an absolute pressure of 32 psi (lbf/in²) and a temperature of 70°F (530°R). Assume that air can be modeled as an ideal gas under these conditions. [If Fahrenheit (°F) and Rankine (°R) temperatures are new or confusing check out the unit conversion page!] Determine the mass of the air inside the tire, in lbm.arrow_forward
- THERMODYNAMICS Prob 1. A piston weighs 4.3 kgs and has a cross sectional area of 450 mm2. Determine the pressure that is exerted by this piston on the gas in the chamber, as shown in the figure. Assume gravitational acceleration 'g' to be 9.81 m/sec2. Piston Gas Prob 2. Find the mass of air in a closed chamber measuring 35 ft x 20 ft x 10 ft, when the pressure is 17 Ib/in? and the temperature is 75°F. Assume air to be an ideal gas.arrow_forwardT F The specific weight of a fluid is the product of the fluid's density and the acceleration due to gravity. Stronger surface tension leads to higher capillary rise. Absolute pressures are frequently negative. If the pressure of fluid drops below the vapor pressure of that fluid at that temperature, the fluid will cavitate. F F T F F Density can be measured in lb;/ft° in the English system of units. For a hydrostatic incompressible fluid, pressure is independent of depth. A fluid with a high bulk modulus of elasticity is more difficult to compress than one with a low bulk modulus of elasticity. Viscosity is caused, in part, by the surface tension within a fluid. A fluid can resist an applied shear stress by deforming. Pressure increases faster with depth in less dense fluids than in more dense fluids. T F F F F Farrow_forwardA certain gas weighs 16.0 N/m3 at a certain temperature and pressure. What are the values of its density, specific volume, and specific gravity relative to air weighing 12.0 N/m³.arrow_forward
- 4arrow_forwardTHERMODYNAMICS Prob 1. A piston weighs 4.3 kgs and has a cross sectional area of 450 mm2. Determine the pressure that is exerted by this piston on the gas in the chamber, as shown in the figure. Assume gravitational acceleration 'g' to be 9.81 m/sec?. Piston Gas Prob 2. Find the mass of air in a closed chamber measuring 35 ft x 20 ft x 10 ft, when the pressure is 17 Ib/in? and the temperature is 75°F. Assume air to be an ideal gas.arrow_forwardFLUID MECHANICS ANSWER 1.42arrow_forward
- Calculate the weight of air (in pounds) contained within a room 23 ft long, 10 ft wide, and 30 ft high. Assume standard atmospheric pressure and temperature of (2,175 lb/ft 2 and 56.0°F, respectively. Note: Specific Heat of Air in English Units, R = 1716 ft*lb/(slug* R) %3Darrow_forwardThere are different types of pressures: atmospheric, barometric, gauge, absolute and vacuum pressure. Refer to Figure 5.18 below: Vacuum Vacuum Helium 20inHg Helium 30inHg , 宁大 (a) (b) (c) (a) What kind of pressure (the 20 inHg) is measured in Figure 5.18 (a)? (b) What kind of pressure (the 30 inHg) is measured in Figure 5.18 (b)? (c) What would the h reading Figure 5.18 (c) assuming that the pressure and temperature inside and outside the helium tank are the same as in part (a) and (b)?arrow_forwardThe figure belows shows a closed tank holding air and oil to which is connected a U-tube mercury manometer and a pressure gage, with L₁ = 4 ft, L₂=0.5 ft, and L3 = 1.25 ft. The densities of the oil and mercury are 55 and 845, respectively, each in lb/ft³. Let g = 32.2 ft/s². Pgage i Pressure gage Determine the reading of the pressure gage, in lbf/in.² (gage). lbf/in.² Air Oil (p = 55 lb/ft³) Patm Mercury (p= 845 lb/ft³) g= 32.2 ft/s²arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Properties of Fluids: The Basics; Author: Swanson Flo;https://www.youtube.com/watch?v=TgD3nEO1iCA;License: Standard YouTube License, CC-BY
Fluid Mechanics-Lecture-1_Introduction & Basic Concepts; Author: OOkul - UPSC & SSC Exams;https://www.youtube.com/watch?v=6bZodDnmE0o;License: Standard Youtube License