Microeconomic Theory
12th Edition
ISBN: 9781337517942
Author: NICHOLSON
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Question
Your company has a customer list that includes 3000 people. Your market research indicates that 90 of them responded to the coupon. If you send a coupon to ONE customer at random, what’s the probability that he or she will use the coupon?
Group of answer choices
3%.
9%.
30%.
90%.
None of the above.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps
Knowledge Booster
Similar questions
- An author is trying to choose between two publishing companies that are competing for the marketing rights to her new novel. Company A has offered the author $10,000 plus $2 per book sold. Company B has offered the author $2,000 plus $4 per book sold. The author believes that four levels of demand for the book are possible are: 1,000, 2,000, 3000 and 5000 books are sold. If the probabilities of each level of demand are as follows: Demand Probability 1000 0.31 2000 0.32 3000 0.25 5000 0.12 Construct the payoff table for each level of demand for company X and company Y. What are the expected monetary value (EMV) and expected opportunity loss (EOL)? Hence determine the best decision that this author should do.arrow_forwardA dealer decides to sell an antique automobile by means of an English auction with a reservation price of $900. There are two bidders. The dealer believes that there are only three possible values, $7,200, $3,600, and $900, that each bidder’s willingness to pay might take. Each bidder has a probability of 1/3 of having each of these willingnesses to pay, and the probabilities for each of the two bidders are independent of the other’s valuation. Assuming that the two bidders bid rationally and do not collude, the dealer’s expected revenue from selling the car is approximately Group of answer choices $3,600. $2,500. $3,900. $5,400. $7,200.arrow_forwardManagers of the restaurant, NicePizzeria@Nola, have to plan for the number of pizzas they want to make at the beginning of each day. Based on market research, the managers know the daily demand can only be one of the three levels: 30, 40 or 50 pizzas. Also, the probabilities of getting a daily demand of 30, 40, 50 pizzas are 0.3, 0.4, 0.3 respectively. The managers decide that their tentative daily supply of pizza should also be one of the three levels: 30, 40 or 50 pizzas. Each pizza costs $3 to make and the price is $8 per pizza. Note: The profit for each pizza sold is $5. For the ones supplied but not sold, the profit is -$3. Fill in the following profit table (hint: use two-way table ) and use the profit table to answer the questions. Three demand levels 30 40 50 30 Three supply 40 levels 50 1) What is the maximin supply level? 2) What is the maximum expected profit (across three supply levels)?arrow_forward
- You hold an oral, or English, auction among three bidders. You estimate that each bidder has a value of either $40 or $50 for the item, and you attach probabilities to each value of 50%. The winning bidder must pay a price equal to the second highest bid. The following table lists the eight possible combinations for bidder values. Each combination is equally likely to occur. On the following table, indicate the price paid by the winning bidder. Combination Number Bidder 1 Value Bidder 2 Value Bidder 3 Value Probability Price ($) ($) ($) 1 $40 $40 $40 0.125 2 $40 $40 $50 0.125 3 $40 $50 $40 0.125 4 $40 $50 $50 0.125 5 $50 $40 $40 0.125 6 $50 $40 $50 0.125 7 $50 $50 $40 0.125 8 $50 $50 $50 0.125 The expected price paid is . Suppose that bidders 1 and 2 collude and would be willing to bid up to a maximum of their values, but the two bidders would not be willing to bid against each…arrow_forwardA seller will run a second-price, sealed-bid auction for an object. There are two bidders, a and b, who have independent, private values v; which are either 0 or 1. For both bidders the probabilities of v; = 0 and v; = 1 are each 1/2. Both bidders understand the auction, but bidder b sometimes makes a mistake about his value for the object. %3| Half of the time his value is 1 and he is aware that it is 1; the other half of the time his value is 0 but occasionally he mistakenly believes that his value is 1. Let's suppose that when b's value is 0 he acts as if it is 1 with probability 1/2 and as if it is zero with 2 probability. So in effect bidder b sees value 0 with probability 1/4 and value 1 with probability 4. Bidder a never makes mistakes about his value for the object, but he is aware of the mistakes that bidder b makes. Both bidders bid optimally given their perceptions of the value of the object. Assume that if there is a tie at a bid of x for the highest bid the winner is…arrow_forwardYou hold an oral, or English, auction among three bidders. You estimate that each bidder has a value of either $100 or $125 for the item, and you attach probabilities to each value of 50%. The winning bidder must pay a price equal to the second highest bid. The following table lists the eight possible combinations for bidder values. Each combination is equally likely to occur. On the following table, indicate the price paid by the winning bidder. Bidder 1 Value Bidder 2 Value Bidder 3 Value Probability Price ($) ($) ($) $100 $100 $100 0.125 $100$100$1250.125 $100$125$1000.125 $100$125$1250.125 $125$100$1000.125 $125$100$1250.125 $125$125$1000.125 $125$125$1250.125 The expected price paid is . Suppose that bidders 1 and 2 collude and would be willing to bid up to a maximum of their values, but the two bidders would not be willing to bid against each other. The probabilities of the combinations of bidders are still…arrow_forward
- A real estate developer must decide on a plan for developing a certain piece of property. After careful consideration, the developer has two acceptable alternatives: residential proposal or commercial proposal. The main factor or state of nature that will influence the profitability of the development is whether or not a shopping center is built close by and the size of the shopping center. There is a 20% chance of no center being built, a 50% chance of a medium shopping center built, and a 30% chance of a large shopping center. If the developer selects the residential proposal and no center is built, he has a further set of options: do nothing $400,000 payoff; build a small shopping center himself $700,000 payoff; or put in a park resulting in $800,000 payoff. Should a medium shopping center be built nearby, his payoff for residential would be $1,600,000 and large shopping center results in a $1,200,000 payoff. If the developer selects the commercial proposal and no center is…arrow_forwardA computer reseller needs to decide how many laptops to order next month. The lowest end laptop costs $220 and the retailer can sell these for $300. However, the laptop manufacturer already announced that they are coming out with a new model in a couple of months. Any laptops that will not be sold by the end of next month will have to be heavily discounted at half-price. The reseller also needs to consider that every time he fails to fulfill a laptop order, he stands to lose $25 for every unit. Based on the past months’ sales, the reseller estimates the demand probabilities for sales (S) as follows: P(0 units) = 0.3; P(1 units) = 0.4; P(2 units) = 0.2; P(3 units) =0.1. The reseller thinks it’s a good idea to conduct a survey on whether or not his customers are going to buy laptops and how many. The survey results will either be Yes (Y), No (N) or Don’t Know (DK). The probability estimates of the results based on the demand for number of units are: P(Y|S = 0 units) = 0.1 P(Y|S = 1…arrow_forwardA computer reseller needs to decide how many laptops to order next month. The lowest end laptop costs $220 and the retailer can sell these for $300. However, the laptop manufacturer already announced that they are coming out with a new model in a couple of months. Any laptops that will not be sold by the end of next month will have to be heavily discounted at half-price. The reseller also needs to consider that every time he fails to fulfill a laptop order, he stands to lose $25 for every unit. Based on the past months’ sales, the reseller estimates the demand probabilities for sales (S) as follows: P(0 units) = 0.3; P(1 units) = 0.4; P(2 units) = 0.2; P(3 units) =0.1. The reseller thinks it’s a good idea to conduct a survey on whether or not his customers are going to buy laptops and how many. The survey results will either be Yes (Y), No (N), or Don’t Know (DK). The probability estimates of the results based on the demand for the number of units are: P(Y|S = 0 units) = 0.1…arrow_forward
- A computer reseller needs to decide how many laptops to order next month. The lowest end laptop costs $220 and the retailer can sell these for $300. However, the laptop manufacturer already announced that they are coming out with a new model in a couple of months. Any laptops that will not be sold by the end of next month will have to be heavily discounted at half-price. The reseller also needs to consider that every time he fails to fulfill a laptop order, he stands to lose $25 for every unit. Based on the past months’ sales, the reseller estimates the demand probabilities for sales (S) as follows: P(0 units) = 0.3; P(1 units) = 0.4; P(2 units) = 0.2; P(3 units) =0.1. The reseller thinks it’s a good idea to conduct a survey on whether or not his customers are going to buy laptops and how many. The survey results will either be Yes (Y), No (N) or Don’t Know (DK). The probability estimates of the results based on the demand for number of units are: P(Y|S = 0 units) = 0.1 P(Y|S = 1…arrow_forwardABC Explosives has purchased fire insurance for its factory. It can institute a fire prevention program, which would cost $90, but which would lower the probability of a fire from 0.01 to 0.001. The insurance company cannot determine whether ABC has instituted the program. However, it charges a deductible in the event of a fire (i.e. ABC has to pay a certain amount to the insurance company if a fire occurs). What is the smallest deductible that will encourage ABC to institute the fire prevention program?arrow_forwardA software developer makes 175 phone calls to its current customers. There is an 8 percent chance of reaching a given customer (instead of a busy signal, no answer, or answering machine). The normal approximation of the probability of reaching at least 20 customers is Multiple Choice .022 .007 .063 .937arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Managerial Economics: A Problem Solving ApproachEconomicsISBN:9781337106665Author:Luke M. Froeb, Brian T. McCann, Michael R. Ward, Mike ShorPublisher:Cengage Learning
Managerial Economics: A Problem Solving Approach
Economics
ISBN:9781337106665
Author:Luke M. Froeb, Brian T. McCann, Michael R. Ward, Mike Shor
Publisher:Cengage Learning