College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
You use a quantity of fuel with a total energy content of 19.02 MJ to power an engine. If the average output of the engine over 2 hours was 2.12 kW, what is the efficiency of the engine?
SAVE
AI-Generated Solution
info
AI-generated content may present inaccurate or offensive content that does not represent bartleby’s views.
Unlock instant AI solutions
Tap the button
to generate a solution
to generate a solution
Click the button to generate
a solution
a solution
Knowledge Booster
Similar questions
- An ideal Heat Engine is determined to have an efficiency of 21.7% and a power output of 139kW. How much energy must be provided to run this engine for an hour?arrow_forwardAs a gasoline engine is running, an amount of gasoline containing 15,200 J of chemical potential energy is burned in 1 s. During that second, the engine does 3,800 J of work. (a) What is the engine's efficiency (in percent)? (b) The burning gasoline has a temperature of about 5,000°F (3,000 K). The waste heat from the engine flows into air at about 86°F (303 K). What is the Carnot efficiency (in percent) of a heat engine operating between these two temperatures?arrow_forwardA truck mass of m=1210kg drives up an incline at a constant speed of v = 12.7 m/s. The forces of air drag and friction combine to give a non-conservative force opposing the motion of f=515N. The truck's motor has power P=65.7kW with efficiency e=0.81so that a fraction 1-0.81 of the power goes into heat and noise. a)Enter an expression for sin(φ), where φ is the maximum slope for which the truck can maintain a constant speed. Use g for the acceleration due to gravity. b)What is φ in degrees?arrow_forward
- Suppose you spend 30.0 minutes on a stairclimbing machine, climbing at a rate of 90.0 steps per minute, with each step 8.00 inches high. If you weigh 150 lb and the machine reports that 600 kcal have been burned at the end of the workout, what efficiency is the machine using in obtaining this result? If your actual efficiency is 0.18, how many kcal did you actually burn?arrow_forwardAs a gasoline engine is running, an amount of gasoline containing 13,600 J of chemical potential energy is burned in 1 s. During that second, the engine does 3,400 J of work. (a) What is the engine's efficiency (in percent)? % (b) The burning gasoline has a temperature of about 4,100°F (2,500 K). The waste heat from the engine flows into air at about 90°F (305 K). What is the Carnot efficiency (in percent) of a heat engine operating between these two temperatures? Need Help? % Read Itarrow_forwardA Carnot engine uses a hot reservoir consisting of a large amount of boiling water and a cold reservoir consisting of a large tub of ice and water. When 6442 J of heat is put into the engine and the engine produces work, how many kilograms of ice in the tub are melted due to the heat delivered to the cold reservoir? Do not enter unit.arrow_forward
- The engine of a large ship does 1.97 1010 J of work with an efficiency of 8.60%. (a) How much waste heat is produced? (b) How many barrels of fuel are consumed if each barrel produces 6.00 109 J of heat when burned?arrow_forwardA heat pump removes 2060 J of heat from the outdoors and delivers 3060 J of heat to the inside of a house. (a) How much work does the heat pump need?(b) What is the coefficient of performance of the heat pump?arrow_forwardA large electrical power station generates 1050 MW of electricity with an efficiency of 37.0%. (a) Calculate the heat transfer (in J) to the power station, Q, in one day. (b) How much heat transfer Q. (in J) occurs to the environment in one day? (c) If the heat transfer in the cooling towers is from 35.0°C water into the local air mass, which increases in temperature from 18.0°C to 20.0°C, what is the total increase in entropy (in J/K) due to this heat transfer? J/K (d) How much energy (in J) becomes unavailable to do work because of this increase in entropy, assuming an 18.0°C lowest temperature? (Part of Q. could be utilized to operate heat engines or for simple space heating, but it rarely is.) to Additional Materials O Reading CS Scanned with CamScannerarrow_forward
- Suppose that a heat engine takes 3.20 104 J of heat from the high-temperature reservoir to produce 1.90 104 J of mechanical work. (a) What is the efficiency of this engine? (b) How much waste heat does it produce?arrow_forwardA freezer has a coefficient of performance of 6.30. The freezer is advertised as using 433 kW-h/y. Note: One kilowatt-hour (kW-h) is an amount of energy equal to operating a 1-kW appliance for one hour. (a) On average, how much energy does the freezer use in a single day? J (b) On average, how much thermal energy is removed from the freezer each day? J (c) What maximum amount of water at 17.0°C could the freezer freeze in a single day? (The latent heat of fusion of water is 3.33 ✕ 105 J/kg, and the specific heat of water is 4186 J/kg · K.) kgarrow_forwardAn electric motor has its shaft coupled to that of an electric generator. The motor drives the generator, and some current from the generator is used to run the motor. The excess current is used to light a home. What is wrong with this scheme?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON