Chemistry
10th Edition
ISBN: 9781305957404
Author: Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Please correct answer and don't use hand rating
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Similar questions
- Now consider the London interaction between the phenyl groups of two Phe residues (see Problem P14B.5). (a) Estimate the potential energy of interaction between two such rings (treated as benzene molecules) separated by 0.4 nm. For the ionization energy, use I = 5.0 eV. (b) Given that force is the negative slope of the potential, calculate the distance-dependence of the force acting between two non-bonded groups of atoms, such as the phenyl groups of Phe, in a polypeptide chain that can have a London dispersion interaction with each other. What is the separation at which the force between the phenyl groups (treated as benzene molecules) of two Phe residues is zero? Hint: Calculate the slope by considering the potential energy at r and r + δr, with δr << r, and evaluating {V(r + δr) − V(r)}/δr. At the end of the calculation, let δr become vanishingly small.arrow_forwardEstimate the magnitude of the transition dipole moment of a charge-transfer transition modelled as the migration of an electron from a H1s orbital on one atom to another H1s orbital on an atom a distance R away. Approximate the transition moment by −eRS where S is the overlap integral of the two orbitals. Sketch the transition moment as a function of R using the expression for S given in Table 9C.1. Why does the intensity of a charge-transfer transition fall to zero as R approaches 0 and infinity?arrow_forward15. Modeling ligand binding. A ligand is bound to a protein with a spring-like square-law energy e(x), where x is the distance between the ligand and protein as shown in the figure. e(2) = }ca² Protein Ligand (a) For constant (T,V,N), write an expression for the probability distribution p(x) of the ligand separation from the protein. (b) Sketch a plot of p(x) vs x. Write an expression for the average location of the ligand, (x). (d) Write an expression for the second moment of the location of the ligand, (x2). (e) Calculate the average energy, (e) of the system.arrow_forward
- 3. ^14N^16O (the superscripts represent the atomic mass number) (a) NO molecules rotate at an angular velocity of 2.01x10^12 rev/s, at the quantized rotational state with the rotational quantum number J of 3. Calculate the bond length of NO molecules. (b) Can NO molecules rotate under light irradiation? Explain your answer. (c) Calculate the effective force constant of the vibrational mode of NO at a frequency of 5.63x10^13 Hz measured by the infrared absorption spectrum. (d) NO has a bond energy of 6.29 eV. Applying the parabolic approximation to estimate the longest distance in which N and O atoms can be stretched before the dissociation of the molecular bondarrow_forward(4) Electrons are no longer ejected from a sample of metal whenever it is illuminated by light with wavelength greater than 344nm. (a) Based on the table below, what is the most likely metal being illuminated? (b) If the sample is illuminated by light with wavelength 48.3nm, what is the stopping potential? (c) In the event this sample of metal were replaced by a metal with a smaller work function, but still illuminated with light with 48.3nm, would the kinetic energy of the ejected electrons increase or decrease? (d) What is the threshold frequency for cesium? Atom W (eV) Cesium 2.1 Calcium 2.9 Uranium 3.6 Cadmium 4.07 Lead 4.14 Niobium 4.3 Iron 4.5 Copper Cobalt 4.7 5 Gold 5.11 Platinum 6.35arrow_forward(i) Determine the IR and Raman active modes of vibrations for both the cis and trans isomers of L2M(CO)4,arrow_forward
- The 1H35Cl molecule is quite well described by the Morse potential energy with hc ᷉ De = 5.33 eV, ᷉v = 2989.7 cm−1, and xe ᷉v = 52.05 cm−1. Assuming that the potential is unchanged on deuteration, predict the dissociation energies (hc ᷉ D0, in electronvolts) of (a) 1H35Cl, (b) 2H35Cl.arrow_forwardRose bengal is a chromophore used in biological staining that has an absorption maximum at 559.1 nm559.1 nm and several other shorter wavelength absorption bands in the ultraviolet and visible regions of the spectrum when dissolved in ethanol. What is the energy difference, in kilojoules per mole, between the absorption maximum at 559.1 nm559.1 nm and a band at 263.5 nm263.5 nm?arrow_forwardDiscuss how X-rays suitable for macromolecular studies are generated “in-house”. What are the advantages of using synchrotron radiation for macromolecular studies?arrow_forward
- The rotational constant of 12C16O2 (from Raman spectroscopy) is 11.70 GHz. What is the CO bond length in the molecule?arrow_forwardThe bond dissociation energy of a typical C-Cl bond in a chlorofluorocarbon is approximately 330 kJ mol-1. Calculate the maximum wavelength of light that can photodissociate a molecule of CCl2F2, breaking such a C-Cl bond.arrow_forwardWe can use the classical harmonic oscillator to think about molecular bonds. The HCI molecule has a force constant k = 481 N/m. For the mass, use the reduced mass, which is defined as µ = (m₁m₂)/(m₁+m₂). a) Plot the potential energy of HCl from -1 to 1 Å. What happens to the curvature of the potential as the force constant is varied? What does this mean physically? b) Plot position as a function of time for a total energy of 6 x 10-20 J. What is the period of the motion? How does the period change as the force constant is varied? Explain why this makes sense physically.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY