You have already localized the genes to the same chromosome by deletion mapping, and now decide that the best way to accomplish the mapping is to conduct two simultaneous three-point testcross experiments. The genes you are investigating are as follows: N = round leaves, n = notched leaves; H = smooth stems, h = hairy stems; R = purple flowers, r = red flowers; B = grey seeds, b = black seeds; and Y = green pods, y = yellow pods. Earlier experiments you have done already established that gene B is in the middle of this gene cluster, so you design both three-point test crosses to include that gene. Cross #1 is designed as RrHhBb x rrhhbb while cross #2 is NnBbYy x nnbbyy. The results of both crosses are given in the table below. Based on the information given, determine the arrangement of these five genes including the position of each allele in the heterozygous fly and the distances between each pair of genes. (Hint: treat each experiment separately, knowing that gene B is in the middle!)
You have already localized the genes to the same chromosome by deletion mapping, and now decide that the best way to accomplish the mapping is to conduct two simultaneous three-point testcross experiments. The genes you are investigating are as follows: N = round leaves, n = notched leaves; H = smooth stems, h = hairy stems; R = purple flowers, r = red flowers; B = grey seeds, b = black seeds; and Y = green pods, y = yellow pods. Earlier experiments you have done already established that gene B is in the middle of this gene cluster, so you design both three-point test crosses to include that gene. Cross #1 is designed as RrHhBb x rrhhbb while cross #2 is NnBbYy x nnbbyy. The results of both crosses are given in the table below.
Based on the information given, determine the arrangement of these five genes including the position of each allele in the heterozygous fly and the distances between each pair of genes. (Hint: treat each experiment separately, knowing that gene B is in the middle!)
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 1 images