Concept explainers
Working for an engineering consultancy firm, your knowledge of fluid dynamics is required to design a new safety feature for a high-pressure air line in a factory. The air line takes the form of a cylindrical pipe of diameter 150 mm, which is designed to operate between 0.45 MPa and 0.76 MPa. At the end of the pipe a bursting disk is placed so that, if the pressure exceeds the maximum operating pressure, the air is vented to atmosphere rather than over-pressuring the chemical reaction vessel (Figures 4a and 4b). In this question, you should treat the flow as quasione-dimensional and inviscid. The air in the surrounding atmosphere is at 101 kPa and 298 K.
Due to an over-pressurisation of the air line, the disk bursts at time t = 0. At what pressure in the air line will this occur?
Step by stepSolved in 3 steps
- Industrial Pipes Are compression joints only used in small diameter pipelines, e.g. in compressed air systems for instrumentation?arrow_forwardB/A boiling channel receives a thermal power of 6000 kw. If subcooled water at 275 °C enters the channel at a flow rate of 15 kg/s what is the void fraction at the channel outlet where the slip ratio is 1.687 and pressure is 68 bar. Given data: At 68 bar: h=1256 KJ/Kg, hg-1518 KJ/Kg, V-1.344*10-³ m³/Kg, V-28.27*10³ m³/Kgarrow_forwardplease answer question ASAParrow_forward
- Working for an engineering consultancy firm, your knowledge of fluid dynamics is required to design a new safety feature for a high-pressure air line in a factory. The air line takes the form of a cylindrical pipe of diameter 150 mm, which is designed to operate between 0.45 MPa and 0.76 MPa. At the end of the pipe a burs9ng disk is placed so that, if the pressure exceeds the maximum opera9ng pressure, the air is vented to atmosphere rather than over-pressuring the chemical reac9on vessel (Figures 4a and 4b). In this ques9on, you should treat the flow as quasione-dimensional and inviscid. The air in the surrounding atmosphere is at 101 kPa and 298 K. a) You have a choice of five disks which can withstand the following forces across them before burs9ng: 10.5 kN, 11.0 kN, 11.5 kN, 12.0 kN, 12.5 kN. Which of these burs9ng disks would you recommend, and why? b) Due to an over-pressurisa9on of the air line, the disk bursts at 9me t = 0. At what pressure in the air line will this occur? c)…arrow_forwardConsider flow of blood in the microvessels of the body, assuming Poiseuille’s law holds and that the viscosity of the blood is constant. Consider a parent vessel that bifurcates into two daughter segments, all within the microcirculation and with blood flow described using Poiseuille’s law (assume that each segment has a different diameter and length).Denoting the pressure at node i by pi (i=1,2,3,4), and the flux in segment j by Qj (j=1,2,3), write down expressions for the segment fluxes in the network, in terms of the nodal pressures. How are the three volume fluxes related, and why? Assuming that the pressures at nodes 1, 3, 4 (the boundary nodes) are known, write down an expression for the pressure at the interior node, p2.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY