Chemistry: Principles and Reactions
8th Edition
ISBN: 9781305079373
Author: William L. Masterton, Cecile N. Hurley
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
Which one of the following represents an acceptable set of quantum numbers for an electron in an atom? (arranged as n, l, ml , and ms)
a. 3, -1, -4, 1/2
b. 3, 0, 0, 1/2
c. 3, -3, 1, -1/2
d. 0, 2, 1, 0
e. 3, 3, 4, 3
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- What type of electron orbital (i.e., s, p, d, or f) is designated by an electron with quantum numbers (a) n=1,l=0,m l =0(b) n=3,l=2,m l =1? (c) n=4,l=3,m l =3arrow_forwardExplain why each of the following sets of quantum numbers would not be permissible for an electron, according to the rules for quantum numbers. a n = 1, I = 0, mi = 0, ms = +1 b n = 1, I = 3, mi = +3, ms=+12 c n = 3, I = 2, mi = +3, ms=12 d n = 0, I = 1, mi = 0, ms=+12 e n = 2, I = 0, mi = 1, ms=+32arrow_forwardWhich of the following sets of quantum numbers correctly represents a 4p orbital? (a) n = 4, = 0, m = 1 (b) n = 4, = 1, m = 0 (c) n = 4, = 2, m = 1 (d) n = 4, = 1, m =2arrow_forward
- 6.29 A mercury atom emits light at many wavelengths, two of which are at 435.8 and 546.1 nm. Both of these transitions are to the same final state. (a) What is the energy difference between the two states for each transition? (b) lf a transition between the two higher energy states could be observed, what would be the frequency of the light?arrow_forwardWhat are the allowed values for each of the four quantum numbers: n, l, ml, and ms?arrow_forwardAlthough no currently known elements contain electrons in g orbitals in the ground state, it is possible that these elements will be found or that electrons in excited states of known elements could being orbitals. For g orbitals, the value of l is 4. What is the lowest value of n for which g orbitals could exist? What are tile possible values of ml? How many electrons could a set of g orbitals hold?arrow_forward
- Which of the following is a valid set of quantum numbers for an electron in a hydrogen atom? (a) n = 1, = 0, m = 0, ms = 1 (b) n = 1, = 1, m = 0, ms = 1/2 (c) n = 1, = 0, m = 1, ms = + 1/2 (d) n = 1, = 0, m = 0, ms = 1/2arrow_forward6.49 Which of these electron configurations are for atoms in the ground state? In excited states? Which are impossible? (a) 1s22s1, (b) 1s22s22p3, (c) [Ne] 3s23p34s1, (d) [Ne] 3s23p64s23d2, (e) [Ne] 3s23p64f 4, (f) 1s22s22p43s2arrow_forwardHeated lithium atoms emit photons of light with an energy of 2.9611019 J. Calculate the frequency and wavelength of one of these photons. What is the total energy in 1 mole of these photons? What is the color of the emitted light?arrow_forward
- Suppose that the spin quantum number could have the values 12,0 and 12 . Assuming that the rules governing the values of the other quantum numbers and the order of filling sublevels were unchanged, (a) what would be the electron capacity of an s sublevel? a p sublevel? a d sublevel? (b) how many electrons could fit in the n=3 level? (c) what would be the electron configuration of the element with atomic number 8? 17?arrow_forwardOne bit of evidence that the quantum mechanical model is correct lies in the magnetic properties of matter. Atoms with unpaired electrons are attracted by magnetic fields and thus are said to exhibit pararamagnetism. The degree to which this effect is observed is directly related to the number of unpaired electrons present in the atom. Consider the ground-state electron configurations for Li, N, Ni, Te, Ba, and Hg. Which of these atoms would be expected to be paramagnetic, and how many unpaired electrons are present in each paramagnetic atom?arrow_forwardWhich of the following statements is (are) true? I. The product of wavelength and frequency of light is a constant. II. As the energy of electromagnetic radiation increases, its frequency decreases. III. As the wavelength of light increases, its frequency increases. a I only b II only c III only d I and III only e II and III onlyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning