College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
What is the time constant for the discharge of the capacitors in the circuit shown in the figure? if the 2.00 uf capacitor initially has a potential difference of 10v across its plates. how much charge remains after the switch has been closed for a time equal to half the time constant?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A parallel plate capacitor has a charge Q, and a voltage difference AV. The gap is air-filled with an electric field E. 1. The capacitor is then disconnected from the circuit so that there is no path for the electrons to move from one plate to another. An insulator of dielectric constant *> 1 is then inserted to fill the entire gap. The electric field in the gap will cause the charges in the dielectric to separate slightly. This leaves an excess layer of negative charges on the top of the insulator and an excess layer of positive charges at the bottom surface of the insulator. This induced surface charge creates an induced electric field opposite the direction of the original electric field. a. The new net electric field is Ē' = Z₂ + Ēinduced. Which is true of E', the magnitude of the new net field? Choose one. E' = E, (the net electric field is the same as the original electric field) E' = E₁/x (the net electric field is smaller than the original field.) b. Which is true of the new…arrow_forwardWhat is their equivalent capacitance?arrow_forwardThe circuit in the figure below contains a 90.0 V battery and four capacitors. In the top parallel branch, there are two capacitors, one with a capacitance of C, = 6.00 uf and another with a capacitance of 6.00 uF. In the bottom parallel branch, there are two more capacitors, one with a capacitance of 2.00 uF and another with a capacitance of C, = 8.00 pF. 6.00 uF 2.00 uF 90.0 V (a) What is the equivalent capacitance (in uF) of the entire circuit? (b) What is the charge (in uC) on each capacitor? on C, on C2 on the 6.00 uF capacitor pc on the 2.00 uF capacitor (c) What is the potential difference (in V) across each capacitor? across C, across C, V across the 6.00 µF capacitor across the 2.00 pF capacitorarrow_forward
- A defibrillator containing a 17.7 µF capacitor is used to shock the heart of a patient by holding it to the patient's chest. Just prior to discharging, the capacitor has a voltage of 12.5 kV across its plates. How much energy is released into the patient? energy: Jarrow_forwardSix uncharged capacitors with equal capacitances are combined in parallel. The combination is connected to a 7.29 V battery, which charges the capacitors. The charging process involves 0.000313 C of charge moving through the battery. Find the capacitance C of each capacitor. С — Farrow_forwardA capacitor with capacitance C = 5 µF is charged to a voltage V = 10V. It is then discharged through a resistor R=2 MQ. At what time after the start of the discharge process has the voltage across the capacitor fallen to 1V?arrow_forward
- A 15 microFarad capacitor is in a circuit with a 4.0 V battery. Electrons will move after the switch is closed. What is the energy stored in the capacitor after the switch is closed long enough time?arrow_forwardFigure R ww 10.0 pF 20.0 pF 40.0 pF < 1 of 1 30.0 pF Part G After the switch is closed, find the maximum potential difference across the 30.0 pF capacitor. Express your answer in volts. IVE ΑΣΦ V30 = Submit Part H V40 = Submit After the switch is closed, find the maximum potential difference across the 40.0 pF capacitor. Express your answer in volts. ||| ΑΣΦ Part I IA = Submit Part J Request Answer T = Request Answer After the switch is closed, find the maximum reading of the ammeter A. Express your answer in amperes. IVE| ΑΣΦ Submit Request Answer ? After the switch is closed, find the time constant for the circuit. Express your answer in picoseconds. G| ΑΣΦ Request Answer ? ? ? V V A psarrow_forwardWhat is the overall energy stored in microjoules (µJ) within the capacitors in the circuit depicted in the image?arrow_forward
- A defibrillator containing a 16.7 µF capacitor is used to shock the heart of a patient by holding it to the patient's chest. Just prior to discharging, the capacitor has a voltage of 11.5 kV across its plates. How much energy is released into the patient? energy: Jarrow_forwardA 243-μF capacitor is connected in series with a 122-μF capacitor. What is the equivalent capacitance of the pair? Express your answer to three significant figures and include appropriate units.arrow_forwardThree identical capacitors of 3.1 x 10-6F are used to build a circuit. Two of the capacitors are placed in parallel. The third is connected in series with the parallel capacitors. What is the equivalent capacitance of the circuit?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON