College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
A calorimeter with a heat capacity of 50 cal/°C contains a mixture of 100 g of water and 100 g of ice, in thermal equilibrium. An electric heater of negligible heat capacity(1) is immersed in it and a current of constant power P is passed through it. After 5 minutes the calorimeter contains water at 39.7oC. The latent heat of fusion of ice is 80 cal/g. What is the power (in W) of the heater.
(1)Heat capacity C is defined by C = mc
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A small metal cube with a thermal mass mc and an initial temperature 0 is dropped into a container of water that is actively maintained at a constant temperature 0w. The cube quickly comes to rest on the bottom surface of the container. The bottom surface is maintained at a constant temperature 0 (note that this is different from 0w). The thermal resistance between the cube and the water is Rcw while the thermal resistance between the bottom surface of the container and the cube is RCB. The temperature of the cube is denoted by 0c. a) Draw the system schematic indicating the assumed directions of the heat transfer rates. Label all the nodes and system parameters. b) Derive the governing equation for the temperature of the cube, 0c. c) Where does to appear in the system schematic and how does it affect the governing equations? d) Calculate the steady-state temperature of the cube, css, assuming the following system parameters: 0o = 21°C, 0B = 6°C, 0w = 0°C, Rcw = 2°C/W, and RCB = 4°C/Warrow_forwardThe initial temperature of 60 g of ice is -200C. The specific heat capacity of ice is 0.5 cal/g.C0 and water’s is 1 cal/g.C0. The latent heat of fusion of water is 80 cal/g. How much heat is required to raise the ice to 00C and completely melt the ice? (b) How much additional heat is required to heat the water (obtained by melting the ice) to 620C?arrow_forwardA 1500-W hotplate is used to heat up a 1.04kg aluminum pot filled with 1.22kg of water and a 0.855kg lead mass for 5 minutes. If the initial temperature of the system was 72 degrees F, find the final equilibrium temperature. Assume that all the energy of the hot plate goes into the system. (C water = 4180 J/kg*K , C aluminum - 910 J/kg*K, C lead = 160 J/kg*K).arrow_forward
- 0.0056 mol of gas undergoes the process shown in (Figure 1). gure p (atm) 6 4- 2- 0+ 0 100 200 300 V (cm³) 1 of 1arrow_forwardQuestion 10. A detective has been called to the scene of a crime where a dead body has just been discovered. The detective arrives at 9:00 AM and begins to investigate. Immediately, the temperature of the body is taken and is found to be 90.3°F. The detective checks the programmable thermostat and finds that the room has been kept at a constant 68.0°F for the past 3 days. After the evidence from the crime scene is collected, the temperature of the body is taken once more and found to be 89.0°F. This last temperature reading was taken exactly one hour after the first one. The following day, the detective is asked "At what time did our victim die?" Assuming that the victim's body temperature was normal (98.6°F) prior to death, what should the detective answer?arrow_forwardYou have a spherical heater, outside diameter = 3.40 cm, immersed in a container of water. In order to keep the water in the container heated to a constant temperature of 35.0°C you adjust the temperature of the spherical heater. You reach a steady-state condition when the surface temperature of the spherical heater is at 79.0°C. Assuming the electrical efficiency of the heater is 100.0%, calculate the power required by the heater (i.e., calculate q). Ignore radiation.arrow_forward
- Liquid helium has a very low boiling point, 4.2 K, as well as a very low latent heat of vaporization, 2.00 104 J/kg. If energy is transferred to a container of liquid helium at the boiling point from an immersed electric heater at a rate of 19.0 W, how long does it take to boil away 2.30 kg of the liquid? _________________minarrow_forwardA container holding 4.20 kg of water at 20.0°C is placed in a freezer that is kept at -20.0°C. The water freezes and comes to thermal equilibrium with the interior of the freezer. What is the minimum amount of electrical energy required by the freezer to do this if it operates between reservoirs at temperatures of 20.0°C and –-20.0°C? (Latent heat of fusion of ice = capacity of water = 4186 J/(kg K), specific heat capacity of ice = 2100 J/(kg K)). 333,700 J/ kg, specific heat kJarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON