Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN: 9780133923605
Author: Robert L. Boylestad
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
b) What is the current at t = 0.008 s? (In [A])
c) What is the voltage at t = 0.008 s? (in [V]) Hint: What relationships exist between voltage and current when the current in an inductor is interrupted?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An LR circuit includes a resistor of resistance R, an inductor of inductance L and a battery of emf E = 10 V. At time t = 0 the current in the circuit is I = 0. At time t = 6.1 ms the current is I = 0.66 A. What are the values of L and R?arrow_forwardA 140-mH inductor and a 5.10-n resistor are connected with a switch to a 6.00-V battery as shown in the figure below. Wele R L (a) After the switch is first thrown to a (connecting the battery), what time interval elapses before the current reaches 220 mA? ms (b) What is the current in the inductor 10.0 s after the switch is closed? | A (C) Now the switch is quickly thrown from a to b. What time interval elapses before the current in the inductor falls to 160 mA? msarrow_forwardShow equationsarrow_forward
- Consider the circuit in figure given below: A B The capacitor C is initially charged. At time 0, the switch is connected from A to B and the voltage across the capacitor is measured. The following data are recorded by a data acquisition system: t(s) 0.0 0.1 0.2 0.3 0.4 0.5 V(V) 4.98 1.84 0.68 0.25 0.09 0.03 (a) Determine the linear correlation coefficient betweent and V. (b) Determine the linear correlation coefficient between t and In(V).arrow_forwardIn the diagram below, the switch S has been closed for a long time. A) What is the output voltage Vout? What is the charge on the capacitor? b) The switch is opened, so the output voltage increases. What is the time constant that describes the charging of the capacitor in terms of R and C? c) When Vout reaches 10 V, the switch closes and the capacitor begins to discharge. What is the time constant that describes the discharging in terms of R and C? Hint: Apply Kirchhoff's Rules to both loops and the sum of the currents at the junction above the capacitor in the diagram, and use I=dq/dt. If the switch opens when Vout reaches a lower value, say 5V, the capacitor will charge again, and thus one can cycle the voltage with a time constant determined by the circuit: this demonstrates the principle of operation of an electronic timer. 4R S 15 V Vout Rarrow_forwardSolve question no.03 and show the solution.Note: The answer is given on the bottom right side of the image, just show the solution on how to get it.Thanks!!!arrow_forward
- What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? Express your answer in joules. How many times per second does the capacitor contain the amount of energy found in part A? Express your answer in times per second.arrow_forwardWhat is the maximum inductance that can be obtained by connecting four 2-H inductors in series and/or parallel? What is the minimum inductance?arrow_forwardWhat is a capacitor and how do they work? What is it about capacitors that make them unique? What is the formula for one time constant? How many time constants does it take to fully charge a capacitor? Show illustrations. What other electronic component(s) are commonly found with a capacitor…especially in timing circuits? What types of capacitors are there? What are the formulas for series and parallel capacitors? If three 30 uF capacitors were connected in parallel what would the net capacity be? How about the net value if the capacitors in Q7 were connected in series? If you were to connect a 5K-ohm resistor in series as in Q7… what would the first time constant be? What about time to full charge? Describe the difference between AC (alternating current) and DC (direct current). Use illustrations. Why is voltage generated and distributed in AC? What type of circuit(s) would change AC to DC? How about DC to AC?arrow_forward
- 4. Why do we examine the behavior of an inductor when the current through it is changing? 5. What is the definition of the time constant? The definition of the time constant is Iarrow_forwardIn the circuit at right, a 100 mH inductor and a 5 N resistor are connected by a switch to a 6 V battery. hlllo a. After the switch is thrown to position a (connecting the battery), what time interval elapses before the current through the inductor is 200 mA? b. What is the current through the inductor 10 seconds later? c. Now the switch is quickly thrown from position a to position b, such that the inductor and resistor form a complete circuit separate from the battery. How much time elapses before the current falls to 200 mA? R L bọarrow_forwardThe current through a 25-mH inductor is 10e t/2 A. Find the voltage at t = 3 s. Enter your answer with the correct sign and in units of mV.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,