Water leaving a thermoelectric plant condenser at 36 °C enters a cooling tower at a mass flow rate of 3.6x107 kg/h. A flow of cooled water returns to the condenser from the tower at a temperature of 30 °C and with the same flow rate. Make-up water is added separately at 20°C. Atmospheric air is admitted to the cooling tower at 25 °C and with 36% relative humidity. Moist air leaves the tower at 90% relative humidity and 35°C. Determine the mass flow rate of dry air and make-up water, in kg/h. Neglect heat exchanges and fan power. Assume permanent regime.

Refrigeration and Air Conditioning Technology (MindTap Course List)
8th Edition
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Chapter36: Refrigeration Applied To Air-conditioning
Section: Chapter Questions
Problem 9RQ: What are higher-efficiency refrigerant blends that can be used as long-term replacements for R-22 in...
icon
Related questions
Question

Water leaving a thermoelectric plant condenser at 36 °C enters a cooling tower at a mass flow rate of 3.6x107 kg/h. A flow of cooled water returns to the condenser from the tower at a temperature of 30 °C and with the same flow rate. Make-up water is added separately at 20°C. Atmospheric air is admitted to the cooling tower at 25 °C and with 36% relative humidity. Moist air leaves the tower at 90% relative humidity and 35°C.
Determine the mass flow rate of dry air and make-up water, in kg/h. Neglect heat exchanges and fan power. Assume permanent regime.

Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Refrigeration and Air Conditioning Technology (Mi…
Refrigeration and Air Conditioning Technology (Mi…
Mechanical Engineering
ISBN:
9781305578296
Author:
John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:
Cengage Learning