Water is the working fluid in a Rankine cycle. Steam exits the steam generator at 1500 lbf/in.2 and 1100°F. Due to heat transfer and frictional effects in the line connecting the steam generator and turbine, the pressure and temperature at the turbine inlet are reduced to 1400 lbf/in.2 and 1000°F, respectively. Both the turbine and pump have isentropic efficiencies of 90%. Pressure at the condenser inlet is 2 lbf/ in.2, but due to frictional effects the condensate exits the condenser at a pressure of 1.5 lbf/in.2 and a temperature of 110°F. The condensate is pumped to 1600 lbf/in.2 before entering the steam generator. The net power output of the cycle is 1 x 109 Btu/h. Cooling water experiences a temperature increase from 60°F to 76°F, with negligible pressure drop, as it passes through the condenser.
Determine for the cycle:
(a) the mass flow rate of steam, in lb/h.
(b) the rate of heat transfer, in Btu/h, to the working fluid passing through the steam generator.
(c) the percent thermal efficiency.
(d) the mass flow rate of cooling water, in lb/h.
Trending nowThis is a popular solution!
Step by stepSolved in 5 steps
- In a cogeneration system, a Rankine cycle operates with steam entering the turbine at 800 lb/in.², 700°F, and a condenser pressure of 180 lb/in.² The isentropic turbine efficiency is 90%. Energy rejected by the condensing steam is transferred to a separate process stream of water entering at 250°F, 140 lb/in.2 and exiting as saturated vapor at 140 lb/in.2 The mass flow rate of the process stream is 48,000 lb/h. Let To -70°F, po - 14.7 lb//in.² Step 1 Determine the mass flow rate for the working fluid of the Rankine cycle, in lb/h. mcycle Step 2 Hint W Your answer is correct. cycle = 54852.5 Determine the net power output for the cycle, in Btu/h. Hint Step 3 Your answer is correct. 7087421.984 € = i lb/h eTextbook and Media Save for Later Btu/h Evaluate an exergetic efficiency for the overall cogeneration system. The exergetic efficiency is defined as the net rate of exergy output divided by the net rate of exergy input. Attempts: 1 of 4 used % Attempts: 2 of 4 used Attempts: 0 of 4…arrow_forwardWater is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 8 MPa, 5608C with a mass flow rate of 7.8 kg/s and exits at 8 kPa. Saturated liquid enters the pump at 8 kPa. The isentropic turbine efficiency is 88%, and the isentropic pump efficiency is 82%. Cooling water enters the condenser at 188C and exits at 368C with no significant change in pressure. Determine: (a) the net power developed, in kW. (b) the thermal efficiency. (c) the mass flow rate of cooling water, in kg/sarrow_forwardWater is the working fluid in an ideal Rankine cycle. Steam enters the turbine at 1400 lbf/in2 and 1400°F. The condenser pressure is 2 lbf/in.2 The net power output of the cycle is 250 MW. Cooling water experiences a temperature increase from 60°F to 76°F, with negligible pressure drop, as it passes through the condenser. (a) the mass flow rate of steam, in Ib/h. (b) the rate of heat transfer, in Btu/h, to the working fluid passing through the steam generator. (c) the percent thermal efficiency. (d) the mass flow rate of cooling water, in Ib/h.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY