Water flows in a channel with uniform curvature RR. The channel has height h=6mm and width w=215mm (normal to the drawing plane) as shown in Fig Q3. The curved part of the channel has a length of l=100mm in the x-direction. You can assume that the channel height is very small compared to the curvature radius. Neglect effects of gravity. Fig Q3: Geometry of curved channel, drawing not to scale. The curvature of the channel is not shown, as too small to be drawn accurately at this scale. Work to 4 significant digits. Enter all values using base units or their combinations, i.e. m, m/s, Pa, N. Do not use multiples as e.g. mm, kPa. You can use values with exponents, such as 0.12e3. Determine the velocity in the middle streamtube, if the overall flowrate is to be the same as 46m/s. Determine the pressure gradient in the streamtube in the middle and determine the pressure difference across the streamtube in the middle:
Water flows in a channel with uniform curvature RR. The channel has height h=6mm and width w=215mm (normal to the drawing plane) as shown in Fig Q3. The curved part of the channel has a length of l=100mm in the x-direction. You can assume that the channel height is very small compared to the curvature radius.
Neglect effects of gravity.
Fig Q3: Geometry of curved channel, drawing not to scale. The curvature of the channel is not shown, as too small to be drawn accurately at this scale.
Work to 4 significant digits. Enter all values using base units or their combinations, i.e. m, m/s, Pa, N. Do not use multiples as e.g. mm, kPa.
You can use values with exponents, such as 0.12e3.
Determine the velocity in the middle streamtube, if the overall flowrate is to be the same as 46m/s. Determine the pressure gradient in the streamtube in the middle and determine the pressure difference across the streamtube in the middle:
Step by step
Solved in 2 steps