Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
Water at 20°C is pumped at a constant rate of 9 m3/h from a large reservoir resting on the floor to the open top of an experimental absorption tower. The point of discharge is 5 m above the floor, and friction losses in the 50-mm pipe from the reservoir to the tower amount to 2.5 J/kg. At what height in the reservoir must the water level be kept if the pump can deliver only 0.1 kW.Determine the mass flow rate of the flowing water in kg/s
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A vehicle travelling at 100 km/h has air passing through its radiator at the rate of 100 kg mol per minute. The hot water from cooling the engine is circulated through the radiator at the rate of 10 L per minute, and as it passes through the radiator it is cooled from 78 °C to 32 °C. Assume the car is in good condition so the radiator has no leaks and the air and water do not contact. Given the heat capacity of the air is 1.0035 J·g-1·K-1, what is the temperature of the air exiting the radiator (assume air has a molecular weight of 29 g·mol-1).arrow_forwardAir (MW=29 g/mol) at 115.00 kPa and 285.00 is compressed steadily to 600.0 kPa. The mass flow rate of the air is 2.00 kg/s and a heat loss of 32.1 kW occurs during the process. You may assume that changes in kinetic and potential energy are negligible, the temperature of the surroundings is 25 ∘C, and that the CP of air is 3.5 R. Given the compressor operates with a second law (reversible) efficiency of 0.60,calculate the following. What is the actual work interaction term in kW? What is the actual exit temperature of the air in Celcius?arrow_forwardA site is being considered for wind power generation. At this site, the wind blows steadily at 9 m/s for 2,579 hours per year. Assuming the wind velocity is negligible at other times for simplicity, determine the kWh/year that can be produced at the site for a turbine with a mechanical efficiency of 100% and an effective flow area of 5 m2. Use a value of 1.25 kg/m3 for the density of the air. Give your answer in killowatt-hours per year (kWh/year). Hint: I reccomend starting by finding the kinetic energy (kJ/kg) of the wind. Hint 2: Multiply the power generation (kW) by the number of hours of wind per year (h/year) to get kWh/year.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY