
Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
Use mathematical induction to prove that the statement is true for every positive integer n.
10 + 20 + 30 + . . . + 10n = 5n(n + 1)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 1 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Use mathematical induction to prove the statement for all natural numbers n: 1+4+7+10+...+(3n-2)=n/2(3n-1)arrow_forwardUse the mathematical induction to prove that an = 4n+1 + 52n-1 is divisible by 21 for any nЄ N.arrow_forwardUse the principle of mathematical induction to show that the statement is true for all natural numbers. 2² +4² +6² + ... + (2n)² = 2n(n + 1)(2n + 1) 3 Let Pn denote the statement: 22 +4² +6² + ... + (2n)² + Check that P₁ is true: 2² = 4 and 2(C Assume Pk is true: 22 +42 +62 + + (² 2 (2n)² = 2n(n + 1)(2n + 1) 3 2² +4² +6² + ... + (2(k+1))² ))( + ¹)(² 1) (2 1 3 To show that Pk+1 is true, add (2(k + 1))² to both sides of Pk. 2² + 4² + 6² + ... + (2k)² + (2( ))²³ = 2 2 |)²-² = +1 1) 2k(k + 1)(2k + 1) 12( + 3 = Rewrite the right-hand side as a single fraction, and then factor the numerator completely. 3 3 2k(k + 1)(2k + 1) +(2( 3 (k + 1)(2k + 1) Thus P₁ is true. 2 2 :))²arrow_forward
- Discrete math Use induction to show that n∑ k=1 k + 3 / [k(k + 1)(k + 2)] = 5/4 − (2n + 5)/ [2(n + 1)(n + 2)] for all positive integers n.arrow_forwardProve the statement is true by using Mathematical Induction.arrow_forwardUse mathematical induction to prove the following: 2 n(n+1) 1+8+ 27 + ...+ n³ 2arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning

Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning