
Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
![**Title: Mathematical Induction Example: Sum of Even Squares**
**Objective:** Rewrite the right-hand side as a single fraction, and then factor the numerator completely.
**Step-by-Step Solution:**
Given equation:
\[ 2^2 + 4^2 + 6^2 + \ldots + (2(k+1))^2 = \frac{2k(k+1)(2k+1) + 12(\text{ })}{3} \]
1. **Rewrite Equation:**
\[
= \frac{(\text{ })2k(2k+1) + 12(\text{ })}{3}
\]
2. **Factor Out Common Terms:**
\[
= \frac{2(k+1)(\text{ })}{3}
\]
3. **Expand and Rearrange:**
\[
= \frac{2(k+1)(k + \text{ })(2k + \text{ })}{3}
\]
**Final Expression:**
Rewrite the right-hand side in the desired form:
\[ 2^2 + 4^2 + 6^2 + \ldots + (2(k+1))^2 = \text{ } \]
**Conclusion:**
So, \(P_{k+1}\) is true. We conclude by the principle of mathematical induction that \(P_n\) is true for all natural numbers \(n\).](https://content.bartleby.com/qna-images/question/9f36f111-f1bc-4b8c-9508-d8f50a3e95e1/ddee6782-0d4e-48bb-a18f-443100ba1973/otyheb7_thumbnail.jpeg)
Transcribed Image Text:**Title: Mathematical Induction Example: Sum of Even Squares**
**Objective:** Rewrite the right-hand side as a single fraction, and then factor the numerator completely.
**Step-by-Step Solution:**
Given equation:
\[ 2^2 + 4^2 + 6^2 + \ldots + (2(k+1))^2 = \frac{2k(k+1)(2k+1) + 12(\text{ })}{3} \]
1. **Rewrite Equation:**
\[
= \frac{(\text{ })2k(2k+1) + 12(\text{ })}{3}
\]
2. **Factor Out Common Terms:**
\[
= \frac{2(k+1)(\text{ })}{3}
\]
3. **Expand and Rearrange:**
\[
= \frac{2(k+1)(k + \text{ })(2k + \text{ })}{3}
\]
**Final Expression:**
Rewrite the right-hand side in the desired form:
\[ 2^2 + 4^2 + 6^2 + \ldots + (2(k+1))^2 = \text{ } \]
**Conclusion:**
So, \(P_{k+1}\) is true. We conclude by the principle of mathematical induction that \(P_n\) is true for all natural numbers \(n\).
![**Using Mathematical Induction for Sum of Squares Formula**
**Statement:**
Use the principle of mathematical induction to show that the following statement is true for all natural numbers:
\[ 2^2 + 4^2 + 6^2 + \ldots + (2n)^2 = \frac{2n(n + 1)(2n + 1)}{3} \]
**Inductive Step Definitions:**
Let \( P_n \) denote the statement:
\[ 2^2 + 4^2 + 6^2 + \ldots + (2n)^2 = \frac{2n(n + 1)(2n + 1)}{3} \]
**Base Case:**
Check that \( P_1 \) is true:
\[ 2^2 = 4 \]
\[ 2\left( \frac{1(1 + 1)(2 \times 1 + 1)}{3} \right) = 4 \]
Thus, \( P_1 \) is true.
**Inductive Hypothesis:**
Assume \( P_k \) is true:
\[ 2^2 + 4^2 + 6^2 + \ldots + (2k)^2 = \frac{2k(k + 1)(2k + 1)}{3} \]
**Inductive Step:**
To show that \( P_{k+1} \) is true, add \( (2(k + 1))^2 \) to both sides of \( P_k \):
\[ 2^2 + 4^2 + 6^2 + \ldots + (2k)^2 + (2(k+1))^2 \]
\[ = \frac{2k(k + 1)(2k + 1)}{3} + (2(k+1))^2 \]
**Simplification:**
Rewrite the right-hand side as a single fraction and factor the numerator completely:
\[ 2^2 + 4^2 + 6^2 + \ldots + (2(k+1))^2 = \frac{2k(k + 1)(2k + 1)}{3} + \frac{12(k+1)^2}{3} \]
This establishes the inductive step, and thus the formula is proven for all natural numbers.](https://content.bartleby.com/qna-images/question/9f36f111-f1bc-4b8c-9508-d8f50a3e95e1/ddee6782-0d4e-48bb-a18f-443100ba1973/vis4tmc_thumbnail.jpeg)
Transcribed Image Text:**Using Mathematical Induction for Sum of Squares Formula**
**Statement:**
Use the principle of mathematical induction to show that the following statement is true for all natural numbers:
\[ 2^2 + 4^2 + 6^2 + \ldots + (2n)^2 = \frac{2n(n + 1)(2n + 1)}{3} \]
**Inductive Step Definitions:**
Let \( P_n \) denote the statement:
\[ 2^2 + 4^2 + 6^2 + \ldots + (2n)^2 = \frac{2n(n + 1)(2n + 1)}{3} \]
**Base Case:**
Check that \( P_1 \) is true:
\[ 2^2 = 4 \]
\[ 2\left( \frac{1(1 + 1)(2 \times 1 + 1)}{3} \right) = 4 \]
Thus, \( P_1 \) is true.
**Inductive Hypothesis:**
Assume \( P_k \) is true:
\[ 2^2 + 4^2 + 6^2 + \ldots + (2k)^2 = \frac{2k(k + 1)(2k + 1)}{3} \]
**Inductive Step:**
To show that \( P_{k+1} \) is true, add \( (2(k + 1))^2 \) to both sides of \( P_k \):
\[ 2^2 + 4^2 + 6^2 + \ldots + (2k)^2 + (2(k+1))^2 \]
\[ = \frac{2k(k + 1)(2k + 1)}{3} + (2(k+1))^2 \]
**Simplification:**
Rewrite the right-hand side as a single fraction and factor the numerator completely:
\[ 2^2 + 4^2 + 6^2 + \ldots + (2(k+1))^2 = \frac{2k(k + 1)(2k + 1)}{3} + \frac{12(k+1)^2}{3} \]
This establishes the inductive step, and thus the formula is proven for all natural numbers.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 3 images

Knowledge Booster
Similar questions
- 1. Evaluate (a) 2 x (-2) x 2 x (-1) x (-4) (b) 2 x (-3)/2 x (-1) x (-3) (c) Factorise this expression: 81x² - 100 (d) Reduce fraction to lowest term: (8a+ 40) / (a + 5)arrow_forwardAdd the following two binomials.(−6a7+14a5)+(−23a5−9a7)arrow_forward3. Which of the following is the factor of 27c +125d3 ? a. (3c + 5d) (9c? + 15cd -25d?) c. (3c + 5d) (9c? - 15cd + 25d?) b. (3c-5d) (9c + 15cd +25d) d. (3c-5d) (9c-15cd + 25d?)arrow_forward
- Find the quotient q and the remainder rif a = bq +r. (a) a = 855 and b=77 (b) a = 524 and b = 35 (a) a = 855 and b= 77 855 = 77(+O (Type whole numbers.)arrow_forwardWrite the expression (2x-1)³ + (x+5)³ in factored form. a. (3x+4) (7x² + 5x+21) b. (3x+4)(3x²-3x+31) O A OB O C O D c. (x-6)(3x²-3x+31) d. (x-6) (7x² + 5x+21)arrow_forwardthank you (b) Find the value of k if 7x9 + kx8 + 3x5 + 5x4 + 7 has a remainder of -3 when divided by x + 1arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning

Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning