Calculus: Early Transcendentals
Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
Bartleby Related Questions Icon

Related questions

Question
**Title: Mathematical Induction Example: Sum of Even Squares**

**Objective:** Rewrite the right-hand side as a single fraction, and then factor the numerator completely.

**Step-by-Step Solution:**

Given equation:
\[ 2^2 + 4^2 + 6^2 + \ldots + (2(k+1))^2 = \frac{2k(k+1)(2k+1) + 12(\text{ })}{3} \]

1. **Rewrite Equation:**
   \[
   = \frac{(\text{ })2k(2k+1) + 12(\text{ })}{3}
   \]

2. **Factor Out Common Terms:**
   \[
   = \frac{2(k+1)(\text{ })}{3}
   \]

3. **Expand and Rearrange:**
   \[
   = \frac{2(k+1)(k + \text{ })(2k + \text{ })}{3}
   \]

**Final Expression:**

Rewrite the right-hand side in the desired form:
\[ 2^2 + 4^2 + 6^2 + \ldots + (2(k+1))^2 = \text{ } \]

**Conclusion:**

So, \(P_{k+1}\) is true. We conclude by the principle of mathematical induction that \(P_n\) is true for all natural numbers \(n\).
expand button
Transcribed Image Text:**Title: Mathematical Induction Example: Sum of Even Squares** **Objective:** Rewrite the right-hand side as a single fraction, and then factor the numerator completely. **Step-by-Step Solution:** Given equation: \[ 2^2 + 4^2 + 6^2 + \ldots + (2(k+1))^2 = \frac{2k(k+1)(2k+1) + 12(\text{ })}{3} \] 1. **Rewrite Equation:** \[ = \frac{(\text{ })2k(2k+1) + 12(\text{ })}{3} \] 2. **Factor Out Common Terms:** \[ = \frac{2(k+1)(\text{ })}{3} \] 3. **Expand and Rearrange:** \[ = \frac{2(k+1)(k + \text{ })(2k + \text{ })}{3} \] **Final Expression:** Rewrite the right-hand side in the desired form: \[ 2^2 + 4^2 + 6^2 + \ldots + (2(k+1))^2 = \text{ } \] **Conclusion:** So, \(P_{k+1}\) is true. We conclude by the principle of mathematical induction that \(P_n\) is true for all natural numbers \(n\).
**Using Mathematical Induction for Sum of Squares Formula**

**Statement:**
Use the principle of mathematical induction to show that the following statement is true for all natural numbers:
\[ 2^2 + 4^2 + 6^2 + \ldots + (2n)^2 = \frac{2n(n + 1)(2n + 1)}{3} \]

**Inductive Step Definitions:**
Let \( P_n \) denote the statement:
\[ 2^2 + 4^2 + 6^2 + \ldots + (2n)^2 = \frac{2n(n + 1)(2n + 1)}{3} \]

**Base Case:**
Check that \( P_1 \) is true:
\[ 2^2 = 4 \]
\[ 2\left( \frac{1(1 + 1)(2 \times 1 + 1)}{3} \right) = 4 \]
Thus, \( P_1 \) is true.

**Inductive Hypothesis:**
Assume \( P_k \) is true:
\[ 2^2 + 4^2 + 6^2 + \ldots + (2k)^2 = \frac{2k(k + 1)(2k + 1)}{3} \]

**Inductive Step:**
To show that \( P_{k+1} \) is true, add \( (2(k + 1))^2 \) to both sides of \( P_k \):
\[ 2^2 + 4^2 + 6^2 + \ldots + (2k)^2 + (2(k+1))^2 \]
\[ = \frac{2k(k + 1)(2k + 1)}{3} + (2(k+1))^2 \]

**Simplification:**
Rewrite the right-hand side as a single fraction and factor the numerator completely:
\[ 2^2 + 4^2 + 6^2 + \ldots + (2(k+1))^2 = \frac{2k(k + 1)(2k + 1)}{3} + \frac{12(k+1)^2}{3} \]

This establishes the inductive step, and thus the formula is proven for all natural numbers.
expand button
Transcribed Image Text:**Using Mathematical Induction for Sum of Squares Formula** **Statement:** Use the principle of mathematical induction to show that the following statement is true for all natural numbers: \[ 2^2 + 4^2 + 6^2 + \ldots + (2n)^2 = \frac{2n(n + 1)(2n + 1)}{3} \] **Inductive Step Definitions:** Let \( P_n \) denote the statement: \[ 2^2 + 4^2 + 6^2 + \ldots + (2n)^2 = \frac{2n(n + 1)(2n + 1)}{3} \] **Base Case:** Check that \( P_1 \) is true: \[ 2^2 = 4 \] \[ 2\left( \frac{1(1 + 1)(2 \times 1 + 1)}{3} \right) = 4 \] Thus, \( P_1 \) is true. **Inductive Hypothesis:** Assume \( P_k \) is true: \[ 2^2 + 4^2 + 6^2 + \ldots + (2k)^2 = \frac{2k(k + 1)(2k + 1)}{3} \] **Inductive Step:** To show that \( P_{k+1} \) is true, add \( (2(k + 1))^2 \) to both sides of \( P_k \): \[ 2^2 + 4^2 + 6^2 + \ldots + (2k)^2 + (2(k+1))^2 \] \[ = \frac{2k(k + 1)(2k + 1)}{3} + (2(k+1))^2 \] **Simplification:** Rewrite the right-hand side as a single fraction and factor the numerator completely: \[ 2^2 + 4^2 + 6^2 + \ldots + (2(k+1))^2 = \frac{2k(k + 1)(2k + 1)}{3} + \frac{12(k+1)^2}{3} \] This establishes the inductive step, and thus the formula is proven for all natural numbers.
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning