College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Two radio antennas separated by d = 300 m, as shown in Figure P24.7, simultaneously broadcast identical signals at the same wavelength. A car travels due north along a straight line at position x = 1 000 m from the center point between the antennas, and its radio receives the signals. (a) If the car is at the position of the second maximum after that at point o when it has traveled a distance of y = 400 m northward, what is the wavelength of the signals? (b) How much farther must the car travel from this position to encounter the next minimum in reception? Hint: Do not use the small angle approximation in this problem.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 10 steps with 10 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two antennas located at points A and B are broadcasting radio waves of frequency 96.0 MHz, perfectly in phase with each other. The two antennas are separated by a distance d= 6.20 m. An observer, P, is located on the x axis, a distance x= 84.0 m from antenna A, so that APB forms a right triangle with PB as hypotenuse. What is the phase difference between the waves arriving at P from antennas A and B? A P X B 4.594x10-¹ rad Computer's answer now shown above. You are correct. Your receipt no. is 158-6031 > Previous Tries Now observer P walks along the x axis toward antenna A. What is P's distance from A when he first observes fully destructive interference between the two waves? 1.203 m As P gets closer A, the path length difference gets larger. What's the smallest path length difference that gives destructive interference? Submit Answer Tries 0/6 Submit Answer Incorrect. Tries 1/6 Previous Tries If observer P continues walking until he reaches antenna A, at how many places along the x…arrow_forwardAn isotropic point source emits light at wavelength 470 nm, at the rate of 210 W. A light detector is positioned 450 m from the source. What is the maximum rate dB/dt at which the magnetic component of the light changes with time at the detector's location? The speed of light is c = 3 x 108 m/s, and Ho = 47 x 107 H/m. Number 2.98754 UnitsTT/s the tolerance is +/-5%arrow_forwardWhat is the average magnitude of the Poynting vector 4.50 mi from a radio transmitter broadcasting isotropically (equally in all directions) with an average power of 240 kW? µw/m²arrow_forward
- PROBLEM 4: A transmitter is transmitting radio signal of 50 MHz with 100 kW output power. Find the field strength due to space wave at a distance of 100 km when the heights of transmitting and receiving antennas are 100 m and 36 m respectively. Assume that the field strength from the transmitting antenna is same as that of half wave antenna.arrow_forwardTwo antennas located at points A and B are broadcasting radio waves of frequency 104.0 MHz. The signals start in phase with each other. The two antennas are separated by a distance d = 8.7 m. An observer is located at point P on the x axis, a distance x = 110.0 m from antenna A. The points A, P, and B form a right triangle. Now observer P walks along the x axis toward antenna A. What is P's distance from A when they first observe fully constructive interference between the two waves?arrow_forwardLunar astronauts placed a reflector on the Moon’s surface, from which a laser beam is periodically reflected. The distance to the Moon is calculated from the round-trip time. What percent error is this, given the average distance to the Moon is 3.84 × 108 m?arrow_forward
- Chapter 27: Problem 6: Unpolarized light of intensity I0 = 950 W/m² is incident upon two polarizers. The first has its polarizing axis vertical, and the axis of the second is rotated θ = 65° from the vertical. Randomized Variables I0 = 950 W/m² θ = 65° Part (a) What is the intensity of the light after it passes through the first polarizer in W/m²? Part (b) What is the intensity of the light after it passes through the second polarizer in W/m²?arrow_forwardConsider a typical red laser pointer with wavelength 653 nm. What is the light's frequency in hertz? (Recall the speed of light c = 3.0 × 108 m/s).arrow_forwardTwo identical sources A and B emit in-phase plane radio waves with frequency 7.84E4 Hz and intensity 1.78E2 W/m2. A detector placed at location P closer to source B than source A detects a destructive interference. What is the intensity of the wave detected by the detector (in W/m2)?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON