College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Two particles with masses 2m and 8m are moving toward each other along the x axis with the same initial speeds vi. Particle 2m is traveling to the left, while particle 8m is traveling to the right. They undergo an elastic, glancing collision such that particle 2m is moving in the negative y direction after the collision at a right angle from its initial direction.
(a) Find the final speeds of the two particles in terms of vi.
(b) What is the angle ? at which the particle 8m is scattered?
particle 2m | ✕ vi |
particle 8m | ✕ vi |
(b) What is the angle ? at which the particle 8m is scattered?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two shuffleboard disks of equal mass, one orange and the other green, are involved in a perfectly elastic glancing collision. The green disk is initially at rest and is struck by the orange disk moving initially to the right at vOi = 6.55 m/s as in Figure a, shown below. After the collision, the orange disk moves in a direction that makes an angle of θ = 38.0° with the horizontal axis while the green disk makes an angle of ϕ = 52.0° with this axis as in Figure b. Determine the speed of each disk after the collision. vof = m/svgf = m/sarrow_forwardA projectile has undergone an elastic one-dimensional collision with an initially stationary target, along an x axis. The figure below is a graph of position versus time for the projectile and target, before and after the collision. (Two line segments are parallel to the time axis.) Which is true about the masses of the projectile and target? 4 O the projectile's mass is greater O the target's mass is greater O the masses are equalarrow_forwardIn the figure, projectile particle 1 is an alpha particle and target particle 2 is an oxygen nucleus. The alpha particle is scattered at angle 0₁ = 72.2° and the oxygen nucleus recoils with speed 1.60 x 105 m/s and at angle 0₂ = 47.0°. In atomic mass units, the mass of the alpha particle is 4.00 u and the mass of the oxygen nucleus is 16.0 u. What are the (a) final and (b) initial speeds of the alpha particle? m₁ Đ Vli m₂ 0₁ Vof xarrow_forward
- A particle of mass m1 undergoes a one-dimensional elastic collision with a particle of mass m2 = 2m1 that is initially at rest. If particle 2 recoils at speed v2 = 1200 m/s, what is the speed of particle 1 before the collision?arrow_forward1. Particle 1 has mass m1= 5 kg and velocity v1= 30 m/s. Particle 2 is at rest and has m2= 3 kg. Given that the velocity of particle 1 after the collision is v1= 7.5 m/s : a. Find the velocity (v2) of particle 2 after the collision B. Draw a diagram(arrows) representing the masses and velocities before and after the Collision.arrow_forwardA firecracker sits at rest on a frictionless floor and explodes into three pieces. The velocities of two pieces are shown below; these particles have equal speed after the explosion. √1 1 √2 If Piece 2 is twice as massive as Piece 1, which choice shows the direction of Piece 3's velocity after the explosion? 0arrow_forward
- Two shuffleboard disks of equal mass, one orange and the other green, are involved in a perfectly elastic glancing collision. The green disk is initially at rest and is struck by the orange disk moving initially to the right at vi = 4.40 m/s as in Figure a, shown below. After the collision, the orange disk moves in a direction that makes an angle of 8 = 40.0° with the horizontal axis while the green disk makes an angle of = 50.0° with this axis as in Figure b. Determine the speed of each disk after the collision. of=1 m/s m/s Vgf= Before the collision After the collision. b of Ⓡarrow_forwardNeed help checking a practice problem. Thanks!arrow_forwardAfter the ball A hits (or collides with) the ball B, they are both observed to move off at 45° to the x axis,ball A above the x axis and ball B below. So ?′A= 45° and ?′B = −45°.Is the collision elastic? Justify your answerarrow_forward
- A particle of mass m₁ and velocity v₁ hits the stationary particle of mass m2. After the collision, the outgoing speeds of these particles are equal. Considering elastic collision what is the angle between velocities of the particles after collision? Mass m₁ = 2m2.arrow_forwardTwo shuffleboard disks of equal mass, one orange and the other green, are involved in a perfectly elastic glancing collision. The green disk is initially at rest and is struck by the orange disk moving initially to the right at vOi = 5.80 m/s as in Figure a, shown below. After the collision, the orange disk moves in a direction that makes an angle of ? = 34.0° with the horizontal axis while the green disk makes an angle of ? = 56.0° with this axis as in Figure b. Determine the speed of each disk after the collision.arrow_forwardTwo objects of equal mass collide. Object A is initially moving with a velocity of 15 m/s in the +x-direction, and object B is initially at rest. After the collision, object A is at rest. There are no external forces acting on the system of two masses. (a) Use momentum conservation to deduce the velocity of object B after the collision. (b) Is this collision elastic? Justify your answer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON