College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
Two particles with masses 2m and 8m are moving toward each other along the x axis with the same initial speeds vi. Particle 2m is traveling to the left, while particle 8m is traveling to the right. They undergo an elastic, glancing collision such that particle 2m is moving in the negative y direction after the collision at a right angle from its initial direction.
(a) Find the final speeds of the two particles in terms of vi.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A certain radioactive (parent) nucleus transforms to a different (daughter) nucleus by emitting an electron and a neutrino. The parent was at rest at the origin of an xy coordinate system. The electron moves away from the origin with linear momentum (-7.8 × 10-22 kg m/s) î; the neutrino moves away from the origin with linear momentum (-2.8 × 10-23 kg m/s) j. What are (a) the magnitude and (b) angle (from the +x axis) of the linear momentum of the daughter nucleus? (c) If the daughter nucleus has a mass of 5.6 × 10-26 kg, what is its kinetic energy? (a) Number Units (b) Number i Units (c) Number i Unitsarrow_forwardA proton with an initial speed of 1.75 ✕ 108 m/s in the +x direction collides elastically with another proton initially at rest. The first proton's velocity after the collision is 1.416 ✕ 108 m/s at an angle of 36.0° with the +x-axis. What is the velocity (magnitude and direction) of the second proton after the collision? Magnitude(m/s): Direction( degree counterclockwise from the +x-axis):arrow_forwardOn a frictionless horizontal air table, puck A (with mass 0.255 kg ) is moving toward puck B (with mass 0.370 kg ), which is initially at rest. After the collision, puck A has velocity 0.122 m/s to the left, and puck B has velocity 0.649 m/s to the right. What was the speed vAi of puck A before the collision? Calculate ΔK, the change in the total kinetic energy of the system that occurs during the collision.arrow_forward
- A 5.3 kg sphere makes a perfectly inelastic collision with a second sphere initially at rest (they stick together after the collision). The composite system moves with a speed equal to one third the original speed of the 5.3 kg sphere. What is the mass of the second sphere?arrow_forwardIn the figure, projectile particle 1 is an alpha particle and target particle 2 is an oxygen nucleus. The alpha particle is scattered at angle 0₁ = 72.2° and the oxygen nucleus recoils with speed 1.60 x 105 m/s and at angle 0₂ = 47.0°. In atomic mass units, the mass of the alpha particle is 4.00 u and the mass of the oxygen nucleus is 16.0 u. What are the (a) final and (b) initial speeds of the alpha particle? m₁ Đ Vli m₂ 0₁ Vof xarrow_forwardTwo objects of masses m1 = 2.0 kg and m2 = 1.3 kg moving towards each other with speeds of 2.2 m/s and 3.1 m/s, respectively, collide inelastically. Calculate the amount of kinetic energy lost in this collision, in joules.arrow_forward
- A particle of mass m1 undergoes a one-dimensional elastic collision with a particle of mass m2 = 2m1 that is initially at rest. If particle 2 recoils at speed v2 = 1200 m/s, what is the speed of particle 1 before the collision?arrow_forwardplease answer this questionarrow_forwardA particle of mass m₁ and velocity v₁ hits the stationary particle of mass m2. After the collision, the outgoing speeds of these particles are equal. Considering elastic collision what is the angle between velocities of the particles after collision? Mass m₁ = 2m2.arrow_forward
- A particle of mass m (particle #1) is fired head-on at speed 48 m/s toward another particle of mass 3m (particle #2) which is at rest. The result of this collision is that #1 comes to a complete stop, and #2 moves forward. (a) At what speed does particle #2 emerge from the collision? (b) What fraction of the original kinetic energy is lost during this process?arrow_forwardCar A and Car B are traveling in the same direction (call it i^), with B behind A, and initial speeds vA=5.6 m/s, and vB = 6 m/s. The cars have identical mass m=103 kg, and they experience an elastic collision. Now, this collision is observed by a third person traveling in a car with constant velocity v=6 m/s, traveling in the same direction as the two cars. From the point of view of this person calculate the following: 1)The initial momentum of car A. 2)The initial momentum of car B. 3)The final momentum of car A (you might want to first calculate the final velocity of car A relative to the ground). 4)The final momentum of car B (you might want to first calculate the final velocity of car B relative to the ground). 5)The total final kinetic energy: 6)The total final kinetic energy as measured from the ground. 7)Based on the previous answers and your calculations of the total initial kinetic energy, does the third person conclude that the collision is:arrow_forwardA radioactive nucleus at rest decays into a second nucleus, an electron, and a neutrino. The electron and neutrino are emitted at right angles and have momenta of pe = 9.26×10−23 kg⋅m/s and pν = 5.98×10−23 kg⋅m/s , respectively. Determine the magnitude of the momentum of the second (recoiling) nucleus. Determine the angle between the momentum of the electron and the momentum of the second (recoiling) nucleus.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON