College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
two particles, of
masses m and 2m, are fixed in place
on an axis. (a) Where on the axis can
a third particle of mass 3m be placed
(other than at infinity) so that the
net gravitational force on it from the
first two particles is zero: to the left
of the first two particles, to their
right, between them but closer to
the more massive particle, or between
them but closer to the less
massive particle? (b) Does the answer
change if the third particle has, instead, a mass of 16m? (c) Is
there a point off the axis (other than infinity) at which the net force
on the third particle would be zero?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- consider particle A of mass mA being somewhere between particle B of mass mB=2000 kg and particleS of mass mc=1000 kg, at just the right distance so that gravitational attraction to particle B and gravitational attraction to particle C are equal. Is this location nearer Particle B or nearer particle C?arrow_forwardConsider two nearly spherical Soyuz payload vehicles, in orbit about Earth, each with mass 9000 kg and diameter 4.0 m. They are initially at rest relative to each other, 10.0 m from center to center. Determine the gravitational force between them and their initial acceleration. Estimate how long it takes for them to drift together, and how fast they are moving upon impact. (5.4 x 10-5 N, 1.7 x 104s, 3.6 x 10-4 m/s)arrow_forwardA planet of mass 5 ⨯ 1024 kg is at location <4 ⨯ 1011, −4 ⨯ 1011, 0> m. A star of mass 4 ⨯ 1030 kg is at location <−6 ⨯ 1011, 4 ⨯ 1011, 0> m. (a) What is the relative position vector pointing from the planet to the star? (b) What is the distance between the planet and the star? (c) What is the unit vector in the direction of r? (d) What is the magnitude of the force exerted on the planet by the star?(e) What is the magnitude of the force exerted on the star by the planet? (f) What is the force (vector) exerted on the planet by the star? (g) What is the force (vector) exerted on the star by the planet? (Note the change in units.)arrow_forward
- Three point particles are fixed in position in an xy plane. Two of them, particle A of mass 6 g and particle B of mass 11 g, are shown in the figure with a separation of dAB = 0.555 m at angle = 30°. Particle C, with mass 7 g, is not shown. The net gravitational force acting on particle A due to particles B and C is 2.31 x 10- N at an angle of -163.8°. from the positive x axis. What are (a) the x coordinate and (b) the y coordinate of particle C? 14 B (a) Number: dAB 0 i (b) Number: i A Units: Units: < <arrow_forwardTwo masses m, = 100 kg and m, = 8100 kg are held 1 m apart. (a) At what point on the line joining them is the gravitational field equal to zero? Find the gravi- tational potential at that point. (b) Find the gravitational potential energy of the system. Given G = 6.67 × 10-" Nm? kg.arrow_forwardRank the following situations from LEAST to GREATEST gravitational force. Provide an explanation. A B C M M m (2m) D 2M M (m) d 2d (2m)arrow_forward
- The Seperation distance between two 1 kg. masses is (a) decreased by 2/3 (b) increased by a factor of 3 how is mutual gravitational force affected?arrow_forwardMass M is divided into two parts xM and (1-x)M. For a given separation, the value of x for which the gravitational attraction between the two pieces becomes maximum. Find this maximum value of x.arrow_forward, are: Three point particles are fixed in position in an xy plane. Two of them, particle A of mass 5 g and particle B of mass 11 g, are shown in the figure with a separation of dAB = 0.519 m at angle O = 30°. Particle C, with mass 9 g, is not shown. The net gravitational force acting on particle A due to particles B and Cis 2.71 x 1014 N at an angle of -163.8°. from the positive x axis. What are (a) the x coordinate and (b) the y coordinate of particle C? В dAB Aarrow_forward
- In the figure below, a square of edge length s is formed by four spheres of masses, m1, m2, m3, and m4. What is the x component and the y component of the net gravitational force from them on a central sphere of mass m5. State your answers in terms of the given variables. ( Use any variable or symbol stated above along with the following as necessary: and G for the gravitational constant.)arrow_forwarda) If the legendary apple of Newton could be released from rest at a height of 4.2 m from the surface of a neutron star with a mass 2.2 times that of our sun (whose mass is 1.99 x 1030 kg) and a radius of 23 km, what would be the apple's speed when it reached the surface of the star? (b) If the apple could rest on the surface of the star, what would be the difference between the gravitational acceleration at the top and at the bottom of the apple? Take the apple to be a sphere with a radius of 3.4 cm.arrow_forwardThe weight of an object is the same on two different planets. The mass of planet A is only twenty percent that of planet B. Find rA/rB, which is the ratio of the radii of the planets.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON