Two nested spherical tanks with the internal and outer diameters of the 100 cm by 104 cm and 114 cm by 118 cm is used to store hot water at 100°C. Both tanks are made of boron fiber epoxy with different composite compositions. The thermal conductivity of the inner tank is 1.5 W/m K while the outer tank has a thermal conductivity of 0.5 W/m K. The gap between the tanks is filled with air (use properties of air at 50°C). The tank is located in an open environment at 0'C. The outer surface of the tank is white painted and heat transfer between the outer surface of the tank and the surrounding is by natural covection and radiation. The convection heat transfer coefficient at the inner and the outer surface of the pipe is h= 20 W/m' K and h,= 10 W/m K. Determine ; a. the rate of heat loss from the tank b. the inside, outside and intermediate surface temperatures. Hint: Take the outer surface temperature as 3°C for radiation calculations.
Two nested spherical tanks with the internal and outer diameters of the 100 cm by 104 cm and 114 cm by 118 cm is used to store hot water at 100°C. Both tanks are made of boron fiber epoxy with different composite compositions. The thermal conductivity of the inner tank is 1.5 W/m K while the outer tank has a thermal conductivity of 0.5 W/m K. The gap between the tanks is filled with air (use properties of air at 50°C). The tank is located in an open environment at 0'C. The outer surface of the tank is white painted and heat transfer between the outer surface of the tank and the surrounding is by natural covection and radiation. The convection heat transfer coefficient at the inner and the outer surface of the pipe is h= 20 W/m' K and h,= 10 W/m K. Determine ; a. the rate of heat loss from the tank b. the inside, outside and intermediate surface temperatures. Hint: Take the outer surface temperature as 3°C for radiation calculations.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY