
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
This problem involves a cylinder falling Inside a pipe that is filled with oil, is depleted in the figure. The small space between the cylinder and the pipe is labricated with an oll film that has aboolute viscosity j. (a) Derive a formula for the steady rate of descent of a cylinder with weight W, diameter d. and length sliding inside a vertical smooth pipe that has inside diameter D. Aesume that the cylinder is concentric with the pipe as it falls. (b) Use the general formula you derive to find the rate of descent of a cylinder 100mm in diameter that slide inside a 100.5mm diameter pipe. The cylinder is 200mm long and weighs 15N. The lubricant is SAE 2OW oll with a viscosity of 2.0 x 10- Pax.

Transcribed Image Text:Pipe
re
er
D.
al
er
nd
Oil film
Cylinder
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps with 1 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Example 5 The space between two square flat parallel plates is filled with oil. Each side of the plate is 60 cm. The thickness of the oil film is 12.5 mm. The upper plate, which moves at 2.5 metre per sec requires a force of 98.1 N to maintain the speed. Determine : - i.the dynamic viscosity of the oil, and ii.the kinematic viscosity of the oil if the specific gravity of the oil is 0.95.arrow_forwardQuestion in image. i need help with q 2arrow_forwardI need the answer as soon as possiblearrow_forward
- The flow rate of water in a garden hose is measured using the bucket-andstopwatch method. Filling a 5-L bucket takes 75 seconds. If the inner diameter of the hose is 10 mm and the density and viscosity of water are approximately 998 kg m-3 and 0.9 cP, respectively, (a) is the flow inside the hose laminar or turbulent? (b) If the flow rate is adjusted such that the flow is with Re = 2100, how long would it take to fill the same bucket?arrow_forwardFIuid mechanicarrow_forwardA body slides on a flat surface coated with heavy oil so that it suffers a viscosity resistance given b Fm:-cv If it was for the starting point for the body find . (A) Values u as a function (B) The maximum distance a body can travelarrow_forward
- Derive an expression for the capillary height change h for afluid of surface tension Y and contact angle θ between twovertical parallel plates a distance W apart, as in Fig. What will h be for water at 20°C if W = 0.5 mm?arrow_forwardA cube of side (a) and mass (M) is initially sitting fully submerged at the bottom of a container filled with a liquid of kinematic viscosity v and density p. The container has a square cross-section of side (a+a/5) and the cube is sitting right at the middle of the container base. (a) A force (F) starts pulling the cube up at a constant velocity (U). Develop an expression for the force in terms of (U, M. a. g, p and v). You may assume that the velocity in the gap between the cube's sides and the container walls is linear. The expression for (F) is to be valid as long as the cube remains submerged. (b) After the cube reaches the water surface, it continues to be pulled up by the same force. Develop a differential equation for the variation with time of the fraction of the cube that is submerged in water.arrow_forwardParrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY