Computer Networking: A Top-Down Approach (7th Edition)
Computer Networking: A Top-Down Approach (7th Edition)
7th Edition
ISBN: 9780133594140
Author: James Kurose, Keith Ross
Publisher: PEARSON
Bartleby Related Questions Icon

Related questions

Question

This code is in Ada programming language

 

Please type your solution out in working code don't just give me an example they may just confuse me more 

 

This code is what I have so far what is in the image is what I'm currently trying to do And asking help with

 

Below is Number_Theory.adb

with Ada.Numerics.Generic_Elementary_Functions;

 

package body Number_Theory is

 

   -- Instantiate the library for floating point math using Floating_Type.

   package Floating_Functions is new Ada.Numerics.Generic_Elementary_Functions(Floating_Type);

   use Floating_Functions;



   function Factorial(N : in Factorial_Argument_Type) return Positive is

   begin

      -- TODO: Finish me!

      --

      -- 0! is 1

      -- N! is N * (N-1) * (N-2) * ... * 1

      return 1;

   end Factorial;

 

   function Is_Prime(N : in Prime_Argument_Type) return Boolean is

      Upper_Bound     : Positive;

      Current_Divisor : Prime_Argument_Type;

   begin

      -- Handle 2 as a special case.

      if N = 2 then

         return True;

      end if;

 

      Upper_Bound := N - 1;

      Current_Divisor := 2;

      while Current_Divisor < Upper_Bound loop

         if N rem Current_Divisor = 0 then

            return False;

         end if;

         Upper_Bound := N / Current_Divisor;

         Current_Divisor := Current_Divisor + 1;

      end loop;

      return True;

   end Is_Prime;



   function Prime_Counting(N : in Prime_Argument_Type) return Natural is

   begin

      -- TODO: Finish me!

      --

      -- See the page for more information.

      return 0;

   end Prime_Counting;



   function Logarithmic_Integral(N : in Prime_Argument_Type) return Floating_Type is

   begin

      -- TODO: Finish me!

      --

      -- See the page for more information.

      return 1.0;

   end Logarithmic_Integral;

 

end Number_Theory;

 

Below is Number_Theory.ads

 

-- This package contains subprograms for doing number theoretic computations.

 

package Number_Theory is

 

   -- Constant Definitions

   -----------------------

   Gamma : constant := 0.57721_56649_01532_86060_65120_90082_40243_10421_59335_93992;



   -- Type Definitions

   -------------------

 

   -- The range of values for which N! can be computed without overflow.

   subtype Factorial_Argument_Type is Integer range 0 .. 12;

 

   -- The range of values that might meaningfully be asked: are you prime?

   subtype Prime_Argument_Type is Integer range 2 .. Integer'Last;

 

   -- A floating point type with at least 15 significant decimal digits.

   type Floating_Type is digits 15;



   -- Subprogram Declarations

   --------------------------

 

   -- Returns N!

   function Factorial(N : Factorial_Argument_Type) return Positive;

 

   -- Returns True if N is prime; False otherwise.

   function Is_Prime(N : in Prime_Argument_Type) return Boolean;

 

   -- Returns the number of prime numbers less than or equal to N.

   function Prime_Counting(N : in Prime_Argument_Type) return Natural;

 

   -- The logarithmic integral function, which is an approximation of the prime counting function.

   function Logarithmic_Integral(N : in Prime_Argument_Type) return Floating_Type;

 

end Number_Theory;



Below in main.adb

 

-- Some packages that we will need.

with Ada.Text_IO;

with Ada.Integer_Text_IO;

with Number_Theory;

 

-- Make the contents of the standard library packages "directly visible."

use Ada.Text_IO;

use Ada.Integer_Text_IO;



procedure Main is

   -- We need to print values of type Number_Theory.Floating_Type, so generate a package for that.

   package Floating_IO is new Ada.Text_IO.Float_IO(Number_Theory.Floating_Type);

   use Floating_IO;

 

   N : Number_Theory.Prime_Argument_Type;

   -- Add any other local variables you might need here.

 

begin

   Put_Line("Counting Primes!");

   -- TODO: Finish me!

end Main;

2. Number theory is a branch of mathematics that concerns itself with the properties of the integers. One function of considerable interest in number theory is the prime counting function. It is traditionally given the name n (but it has nothing to do with circles). For
example n(6) = 3 because there are three prime numbers less than or equal to 6 (namely, 2, 3, and 5).
Start by adding a function to package Number_Theory that computes n(n) for positive values n greater than or equal to 2. Note that the package already has a function Is_Prime that you will no doubt find useful. You might also want to make use of the defined subtype
Prime_Argument_Type. Ada allows you to use Greek letters in variable names, but I suggest using the name Prime_Counting for n instead.
3. Modify the main file main.adb to exercise your function (ask the user to input a value n and then output n(n)). Here are some values of n(n) you can check.
(n)
10
4
100
25
1_000
168
10_000
1_229
100_000
9_592
78_498
664_579
100_000_000 5_761_455
1_000_000_000 50_847_534
1_000_000
10_000_000
expand button
Transcribed Image Text:2. Number theory is a branch of mathematics that concerns itself with the properties of the integers. One function of considerable interest in number theory is the prime counting function. It is traditionally given the name n (but it has nothing to do with circles). For example n(6) = 3 because there are three prime numbers less than or equal to 6 (namely, 2, 3, and 5). Start by adding a function to package Number_Theory that computes n(n) for positive values n greater than or equal to 2. Note that the package already has a function Is_Prime that you will no doubt find useful. You might also want to make use of the defined subtype Prime_Argument_Type. Ada allows you to use Greek letters in variable names, but I suggest using the name Prime_Counting for n instead. 3. Modify the main file main.adb to exercise your function (ask the user to input a value n and then output n(n)). Here are some values of n(n) you can check. (n) 10 4 100 25 1_000 168 10_000 1_229 100_000 9_592 78_498 664_579 100_000_000 5_761_455 1_000_000_000 50_847_534 1_000_000 10_000_000
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Similar questions
Recommended textbooks for you
Text book image
Computer Networking: A Top-Down Approach (7th Edi...
Computer Engineering
ISBN:9780133594140
Author:James Kurose, Keith Ross
Publisher:PEARSON
Text book image
Computer Organization and Design MIPS Edition, Fi...
Computer Engineering
ISBN:9780124077263
Author:David A. Patterson, John L. Hennessy
Publisher:Elsevier Science
Text book image
Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:9781337569330
Author:Jill West, Tamara Dean, Jean Andrews
Publisher:Cengage Learning
Text book image
Concepts of Database Management
Computer Engineering
ISBN:9781337093422
Author:Joy L. Starks, Philip J. Pratt, Mary Z. Last
Publisher:Cengage Learning
Text book image
Prelude to Programming
Computer Engineering
ISBN:9780133750423
Author:VENIT, Stewart
Publisher:Pearson Education
Text book image
Sc Business Data Communications and Networking, T...
Computer Engineering
ISBN:9781119368830
Author:FITZGERALD
Publisher:WILEY