Question
Their are a total of 3 infinitely thin concentric shells. The innermost shell has a radius of R. Another of the shells has a radius of 2R. The third shell has a radius of 3R. The charge for each shell is +2Q.
Draw a graph of E vs r (where E is on the y axis).
Given that E is in units of (kxQ/(a^2)), on the graph make sure to show the values of E(3R), E(2R), and E(R).
Show all work
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Similar questions
- A hollow conducting sphere with inner radius a=1.0m and outer radius b=2.0m is shown in figure (Figure 1). Say a charge q=7.0nC is placed at the center of the sphere denoted by O. Here m denotes meter and 1nC denotes one nano coulomb or 1×10−9C. coulomb constant is k=8.987×109N⋅m2/C2. and r is the distance from the center. (a) Potential at r=a+b2 is, V=?volt Potential Give your answer up to at least three significance digits. (b) Electric Field at r=a+b2 is E(r)=?N/C Electric field Give your answer up to at least three significance digits (c) Magnitude of the electric Field at r=a2 is E(r)=?N/C Electric field Give your answer up to at least three significance digits.arrow_forwardConsider two charges q1=−40e and q2=−48e at positions (48,−46,29) and (32/√3, −10/√2 ,21) respectively where all the coordinates are measured in the scale of 10-9 m or nano meters. If position vector of the charge q1 is r⃗ 1 and charge q2 is r⃗ 2. Now consider another charge q3=−47e is in the xyz system positioned at (−41/√3, 42/√2, 35). Calculate the net force acting on q1 and q2. c) Net Force on q1 due to other charges x component of the force y component of the force z component of the force d) Net Force on q2 due to other charges x component of the force y component of the force z component of the forcearrow_forwardHow do you find the total charge?arrow_forward
- Three charged marbles are glued to a nonconducting surface and are placed in the diagram as shown. The charges of each marble are q₁ = 6.70 µC, 92 = 1.01 µC, and q3 = -2.27 μC. Marble q₁ is a distance r₁ = 3.00 cm to the left of the marble 92, while marble q3 is a distance r3 = 2.00 cm to the right of the marble q2, as shown. Calculate the magnitude of the electric field a distance r' = 1.00 cm to the left of the center marble. N/C y K t * 91 92 observation point ---Select--- V 93 Another marble is placed 1 cm to the left of the middle marble. If this new marble has a charge of -3.71 µC, calculate magnitude and direction of the force on it. magnitude direction N 7₂=0marrow_forwardThree charged marbles are glued to a nonconducting surface and are placed in the diagram as shown. The charges of each marble are q1 = 6.20 µC, q2 = 1.43 µC, and q3 = −2.01 µC. Marble q1 is a distance r1 = 3.00 cm to the left of the marble q2, while marble q3 is a distance r3 = 2.00 cm to the right of the marble q2. Calculate the magnitude of the electric field a distance r' = 1.00 cm to the left of the center marble.N/C Another marble is placed 1 cm to the left of the middle marble. If this new marble has a charge of 3.62 µC, calculate the magnitude and direction of the force on it.arrow_forwardA negative point charge Q1, is located at the origin. A rod of length L is located along the x axis with the near side a distance d from the origin. A positive charge Q2, is uniformly spread over the length of the rod. After integrating the force from each slice over the length of the rod, the magnitude of the electric force on the charge at the origin can be represented as the following: F = (k |Q1| |Q2|) / (d (d + L)) Let L = 2.22m, d = 0.42m, Q1 = -6.29µC, and |Q2| = 11.1µC. Calculate the magnitude if the force in newtons that the rod exerts on the point charge at the origin.arrow_forward
- esc The nucleus of a 125 Xe atom (an isotope of the element xenon with mass 125 u) is 6.0 fm in diameter. It has 54 protons and charge q = +54e. R 2 R F2 W # 3 80 E $ 4 R Part A What is the electric force on a proton 2.6 fm from the surface of the nucleus? Hint: Treat the spherical nucleus as a point charge. Express your answer with the appropriate units. F= 8.64 Part B μà 1 Submit Previous Answers Request Answer % 5 X Incorrect; Try Again; 4 attempts remaining F5 What is the proton's acceleration? Express your answer with the appropriate units. Value T → HA N 6 C FIC ? Units MacBook Air Y & 7 U * 8 FB ( 9 F9 0 0 P + Reviewarrow_forwardThree point charges are located in free space along the x-axis. A positive charge of +2 uC is located at x = 0, a negative charge of -3 μC is located at x = 3 m, and a positive charge of +4 μC is located at x = 6 m. a. Will q1 and q2 attract or repel? Blank 1 b. Will q1 and q3 attract or repel? Blank 2 c. What is the direction of the electrostatic force acting on q1 due to q2? (north, south, east, or west) Blank 3 d. What is the direction of the electrostatic force acting on q1 due to q3? (north, south, east or west) Blank 4 For the following questions, convert your answer into PROPER SCIENTIFIC NOTATION and round the coefficient to two decimal places.(e.g. 5.43 x 10²: 5.43 is the coefficient) What is the magnitude of the electrostatic force on q1 due to q2? Blank 5 x10^Blank 6 N What is the magnitude of the electrostatic force on q1 due to q3? Blank 7x10^Blank 8 N Calculate the net electric force on the positive charge at x = 0 due to the other two charges: Blank 9 x 10^Blank 10 Narrow_forwardA conducting sphere of radius r1 = 0.18 m has a total charge of Q = 1.9 μC. A second uncharged conducting sphere of radius r2 = 0.46 m is then connected to the first by a thin conducting wire. The spheres are separated by a very large distance compared to their size.Randomized Variables r1 = 0.18 mr2 = 0.46 mQ = 1.9 μC What is the total charge on sphere two, Q2 in coulombs?arrow_forward
arrow_back_ios
arrow_forward_ios